• 제목/요약/키워드: Elastic Material

검색결과 2,396건 처리시간 0.028초

건성마찰력을 받는 탄성재료의 안정성에 미치는 중간 지지의 효과 (Effect of an Intermediate Support on the Stability of Elastic Material Subjected to Dry Friction Force)

  • 류시웅;장탁순
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.129-135
    • /
    • 2004
  • This paper discussed on the effect of an intermediate support on the stability of elastic material subjected to dry friction force. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The elastic material on the friction material is modeled for simplicity into an elastic beam on Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distributed follower force is formulated by using finite element method to have a standard eigenvalue problem. The first two eigen-frequencies are obtained to investigate the dynamics of the beam. The eigen-frequencies yield the stability bound and the corresponding unstable mode. The considered beams lose its stability by flutter or divergence, depending on the location of intermediate support.

재사용 수지 비율에 따른 PP, ABS의 강도 특성에 관한 연구 (Study on the Strength Characteristics of PP and ABS According to the Ratio of Recycled Resin)

  • 이준한;김종선
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.57-63
    • /
    • 2024
  • In this study, the recyclability of commonly used PP (polypropylene) and ABS (acrylonitrile butadiene styrene) was evaluated by molding test specimens from mixture of virgin and shredded material, followed by measuring their strength properties, Experiments were conducted o two type of PP (transparent and non-transparent) and two types of ABS (white and yellow). Test specimens for each resin were prepared with shredded material ratios ranging from 10% to 50% in 10% increments. Changes in tensile strength, elastic modulus, and elastic limit were analyzed based on the mixing ratio of the shredded material. The experimental results demonstrated that the strength properties of all the resins remained consistent within a certain range, even with increasing proportions of shredded material. For transparent PP, the tensile strength ranged from 30.87± MPa, the elastic modulus from 1.23±0.04 GPa, and the elastic limit from 19.17±0.44%. Non-transparent PP exhibited a tensile strength ranging from 27.71±0.58 MPa, an elastic modulus from 1.03±0.06 GPa, and an elastic limit from 17.35±0.41%. For ABS, white ABS had a tensile strength of 39.42±0.28 MPa, an elastic modulus of 1.94±0.01 GPa, and an elastic limit of 36.76±0.25%. Yellow ABS showed a tensile strength of 39.25±0.78 MPa, an elastic modulus of 1.94±0.01 GPa, and an elastic limit of 37.14±0.23%, with values remaining consistent within this range. Based on these results, it was confirmed that the mechanical properties of the resins used in this study do not change significantly when mixed with recycled shredded material, indicating excellent mechanical recyclability.

탄성형 에폭시를 사용한 변류기 개발에 관한 연구 (A Study of CT Development Applied Elastic Epoxy)

  • 이관우;이경용;장용무;최용성;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.197-199
    • /
    • 2004
  • In this paper, we studied a accuracy for CT using elastic epoxy. According to industry development, the quality where also the electric material is various is demanded. Insulation material is widely used because epoxy is superior to electrical and mechanical property. Until now, the possibility where the crack will occur is high because epoxy used to electrical products had high hardness. If thermal expansion is different of two material, contraction of epoxy heavily transformed turns ratio of CT. Elastic epoxy absorbed in expansion and contraction of substance material by temperature. So we could design more exacted CT. We had elastic test of elastic epoxy and made CT using elastic epoxy. At the result, We obtained turns ratio of within 4% superior to existing CT.

  • PDF

건성마찰력을 받는 탄성재료의 안정성에 관한 연구 (Study on the Stability of Elastic Material Subjected to Dry Friction Force)

  • 고준빈;장탁순;류시웅
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.143-148
    • /
    • 2004
  • This paper discussed on the stability of elastic material subjected to dry friction force for low boundary conditions: clamped free, clamped-simply supported, simply supported-simply supported, clamped-clamped. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The friction material is modeled for simplicity into a Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distribute follower force is formulated by using finite element method to have a standard eigenvalue problem. It is found that the clamped-free beam loses its stability in the flutter type instability, the simply supported-simply supported beam loses its stability in the divergence type instability and the other two boundary conditions the beams lose their stability in the divergence-flutter type instability.

CFD 기반의 비선형 초탄성 재료의 구조 설계 (The Structural Design for Nonlinear Hyperelastic Materials Based on CFD)

  • 정대석;김지영;이종문;박영철
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.379-386
    • /
    • 2006
  • The hyper-elastic material has been used gradually and its range was extended all over the industry. The performance prediction of hyper-elastic material was required not only experimental methods but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and applied it to seat-ring of butterfly valve. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material. And the optimum model considered conditions and features. According to that model, the load conditions were obtained by using CFD analysis.

에폭시를 사용한 변류기 (Current Transformer Using Epoxy)

  • 박철웅;김향곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.199-202
    • /
    • 2008
  • In this paper, we studied a accuracy for CT using elastic epoxy. According to industry development, the quality where also the electric material is various is demanded. Insulation material is widely used because epoxy is superior to electrical and mechanical property. Until now, the possibility where the crack will occur is high because epoxy used to electrical products had high hardness. If thermal expansion is different of two material, contraction of epoxy heavily transformed turns ratio of CT Elastic epoxy absorbed in expansion and contraction of substance material by temperature. So we could design more exacted CT We had elastic test of elastic epoxy and made CT using elastic epoxy. At the result, We obtained turns ratio of within 4% superior to existing CT.

  • PDF

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory

  • Park, Weon-Tae;Han, Sung-Cheon;Jung, Woo-Young;Lee, Won-Hong
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1239-1259
    • /
    • 2016
  • The modified couple stress-based third-order shear deformation theory is presented for sigmoid functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The present models contain two-constituent material variation through the plate thickness. The equations of motion are derived from Hamilton's energy principle. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression and tension.

내압을 받는 Y 배관의 크리프 수명 평가를 위한 3차원 응력해석 (3-Dimensional Stress Analysis for Creep Life Assessment of Y-Piece Under Inner Pressure)

  • 신규인;이진상;윤기봉
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.22-27
    • /
    • 2007
  • To assess a creep life of elevated temperature plant components, inspections and analysis are usually focused on the critical locations. In this study, stress analysis of a weld region in branch part of Y-piece was conducted by using a three-dimensional finite element analysis. The stresses at the inner and outer surface in the weld part were estimated by using elastic and elastic-creep analysis. For the elastic-creep analysis two kinds of elastic-creep analysis was conducted. The one was assumed that base and weld material properties were same and the other was that material properties were different between base and weld metal. The material properties of base and weld metal were used from reference data. The results showed the stress relaxation level and its location. The result stresses are also compared with elastic stresses.

비선형 해석을 이용한 초탄성 재료의 구조 최적 설계 (The Nonlinear Structure Design for Hyper-elastic Meterials Using Contact Analysis)

  • 김지영;정대석;박영철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1315-1321
    • /
    • 2005
  • Using hyper-elastic material has been increased gradually and its range was extended all over the industrial. In addition, the performance prediction of this material was required not only experimental methods like metal material but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and then, it was applied for seat-ring of butterfly valve by using this process. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material and search the optimum model considered conditions and features. According to that model the coefficient was obtained by using Contact analysis.

  • PDF