• Title/Summary/Keyword: Elastic Field

Search Result 830, Processing Time 0.031 seconds

General nonlocal solution of the elastic half space loaded by a concentrated force P perpendicular to the boundary

  • Artan, R.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.209-214
    • /
    • 2000
  • The main purpose of this paper is to develop the results introduced in Artan (1996) and to find a general nonlocal linear elastic solution for Boussinesq problem. The general nonlocal solution given Artan (1996) is valid only when the distance to the boundary is greater than one atomic measure. The nonlocal stress field presented in this paper is valid for the whole half plane.

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

Stress Evaluation by the Measurement of Acoustoelastic Effect Using a Line-Foucus Acoustic Microscope (선 집속 초음파 현미경을 이용한 음탄성효과 측정에 의한 응력 평가)

  • Kim, J.O.;Lee, Y.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.119-126
    • /
    • 1997
  • The relationship between the applied stresses and the change of elastic wave velocity has been established based on the acoustoelasticity theory. The non-uniform stress field in a loaded specimen has been evaluated from the surface acoustic wave velocity measured by the line-focus acoustic microscopy with the acoustoelastic constants obtained form a calibration test. The evaluated stresses are in good agreement with the results calculated by finite element method.

  • PDF

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

An Experimental Study on the Elastic Modulus of Deep Mixing Ground Specimen (심층혼합 시료의 탄성계수에 관한 실험적 연구)

  • Park, Choon-Sik;Park, Hwan-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.39-49
    • /
    • 2018
  • In this study, aimed at determining the elastic modulus of deep mixed samples, 320 test specimens were developed by mixing 8%, 10%, 12%, and 14% of stabilizer mixture in the granular conditions of clay, sand and gravel. Uniaxial compression tests were carried out using these specimens, and the uniaxial compression strength and strain were analyzed to determine the secant elastic modulus and tangent elastic modulus. Laboratory test results showed that the uniaxial compression strength of all deep mixed samples increased with increasing curing time and stabilizer mixing ratio, and that the secant elastic modulus and the tangen elastic modulus also increased. The increase of the elastic modulus according to the curing period turned out greater in the tangent elastic modulus than in the secant elastic modulus. In order to measure elastic modulus with changes in stabilizer mixing ratio, the correlation coefficient between the elastic modulus for stabilizer mixing ratio of 8% and that of 10%, 12% and 14% was calculated respectively by the specimen condition. The elastic modulus tended to increase as the grain size in a deep mixed specimen increased. The distribution of grain size that had the greatest effect appeared when the composition ratio of sand was high. On the other hand, the increase in the elastic modulus was larger in the sand specimens than in the clay and gravel specimens. Based on these results, it is suggested that a pertinent soil parameter of the deep mixed ground in the field may be obtained by the particle size distribution and the mixing ratio of stabilizer of the deep mixed soil.

Evaluation of Degree of Compaction of Railroad Trackbed Fills Using Elastic Wave Velocities (탄성파 속도를 이용한 철도 토공노반의 다짐도 평가)

  • Kim, Hak-Sung;Jung, Young-Hoon;Gang, Dong-Yeob;Lee, Seong-Hyeok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1650-1658
    • /
    • 2011
  • The quality control of compaction fills has been commonly performed via the field density measurement and plate load tests. However, the engineer frequently encounters difficulties in actually controling the quality due to the uncertainty in the field density measurement as well as the plate load tests. To overcome these difficulties, Park et al. (2009) proposed an alternative quality control method based on the measurement of the compressive wave velocities. In this study, the compressive wave velocities measured in the full-scale model test site were analyzed. Direct arrive seismic tests were performed after the completion of each trackbed layer. To identify a relationship between elastic wave velocities and degree of compaction, laboratory compaction tests were conducted.

  • PDF

Analysis of a Crack in a Linear Electrostrictive Ceramic Subjected to Electric Fields (전기장을 받는 선형 전왜세라믹 내의 균열해석)

  • Beom, Hyeon-Gyu;Jeong, Gyeong-Mun;Gang, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.235-241
    • /
    • 2001
  • A crack with electrically conducting surfaces in a linear electrostrictive ceramic subjected to uniform electric fields is analyzed. Complete forms of electric fields and elastic fields for the crack are derived by using the complex function theory. The linear electromechanical theory predicts overlapping of the traction free crack surfaces. It is shown that the surfaces of the crack are contact near the crack tip. The contact zone size obtained on the basis of the linear dielectric theory for the conducting crack does not depend on the electric fields and depends on only the original crack and the material property for the linear electrostrictive ceramic.

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

Comparison of Collision Avoidance Algorithm for a Mobile Robot using a Simulation (시뮬레이션을 이용한 이동 로봇의 충돌회피 알고리즘 비교)

  • Kim, Kwang-Jin;Ko, Nak-Yong;Park, Se-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.187-194
    • /
    • 2012
  • This paper compares two collision avoidance algorithms using a simulator. The collision avoidance is vital for autonomous navigation of a mobile robot. Artificial potential field method and elastic force method are major approaches for the collision avoidance. The two algorithms are compared in the respect of the time for motion completion and the length of the motion path. The simulator is developed based on IPC(Inter Process Communication) and a differential drive mobile robot is used for the comparison.

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.