• 제목/요약/키워드: Elastic Creep Analysis

검색결과 111건 처리시간 0.028초

참조응력법에 입각한 T-배관 국부 크리프 파단 평가를 위한 응력해석 사례연구 (Reference Stress Based Stress Analysis for Local Creep Rupture of a T-pipe)

  • 신규인;윤기봉;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.873-879
    • /
    • 2006
  • To investigate applicability of the reference stress approach as simplified inelastic stress analysis to estimate local creep rupture, detailed finite element stress analyses of a T-piece pipe with different inner pressure and system loading levels are performed. The reference stresses are obtained from the finite element (FE) limit analysis based on elastic-perfectly-plastic materials, from which the local reference stress for creep rupture is determined from R5. The resulting inelastic stresses are compared with elastic stresses resulting from linear elastic FE calculations. Furthermore they are also compared with the stresses from full elastic-creep FE analyses. It shows that the stresses estimated from the reference stress approach compare well with those from full elastic-creep FE analysis, which are significantly lower than the elastic stress results. Considering time and efforts for full inelastic creep analysis of structures, the reference stress approach is shown to be a powerful tool for creep rupture estimates and also to reduce conservatism of elastic stress analysis significantly.

내압을 받는 Y 배관의 크리프 수명 평가를 위한 3차원 응력해석 (3-Dimensional Stress Analysis for Creep Life Assessment of Y-Piece Under Inner Pressure)

  • 신규인;이진상;윤기봉
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.22-27
    • /
    • 2007
  • To assess a creep life of elevated temperature plant components, inspections and analysis are usually focused on the critical locations. In this study, stress analysis of a weld region in branch part of Y-piece was conducted by using a three-dimensional finite element analysis. The stresses at the inner and outer surface in the weld part were estimated by using elastic and elastic-creep analysis. For the elastic-creep analysis two kinds of elastic-creep analysis was conducted. The one was assumed that base and weld material properties were same and the other was that material properties were different between base and weld metal. The material properties of base and weld metal were used from reference data. The results showed the stress relaxation level and its location. The result stresses are also compared with elastic stresses.

탄성추종계수를 이용한 고온 배관계의 크리프 응력 예측 (Prediction of Creep Stress in High Temperature Piping System Using Elastic Follow-up Factor)

  • 서준민;윤교근;이현재;오영진;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.32-37
    • /
    • 2018
  • When designing high temperature piping system, creep phenomena must be considered. Since ASME code does not provide detailed methods of design by rule (DBR) for high temperature piping, Finite element analysis should be performed. However, In the case of piping system with frequent design changes, creep analysis of the entire piping system for every change is ineffective and practically impossible. Therefore, based on elastic and elastic-plastic analysis, which takes a relatively short time, the creep stress is predicted by using elastic follow-up factor method provided in R5 code and plastic-creep analogy presented by Hoff. The predicted creep stress for a virtual piping system was compared with the creep analysis result and the two results showed similar stress relaxation tendency in time.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

횡방향으로 등방성인 재료에서 균열선단 크리프 변형 거동 (Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials)

  • 마영화;윤기봉
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1455-1463
    • /
    • 2009
  • Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-$2^{nd}$ creep, which elastic modulus ( E ), Poisson's ratio ( ${\nu}$ ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials.

크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석 (Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment)

  • 서준민;이한상;김윤재
    • 대한기계학회논문집A
    • /
    • 제41권8호
    • /
    • pp.703-709
    • /
    • 2017
  • 본 논문에서는 재분배된 크리프 응력을 근사적으로 접근하기 위해 크리프 해석에 비해 비교적 간단한 탄성 및 탄성-소성 해석법을 사용하여 그 결과와 비교하였다. 탄성해석 결과를 이용하여 $M_{\alpha}-tangent$ method의 Primary Stress와 ASME 코드의 $P_L+P_b/K_t$를 구하였고 탄성-소성 해석 결과를 이용하여 R5 코드의 ${\sigma}^R_{ref}$ 를 구하였다. 용접 형상이 있는 십자 모양의 판 형상에 굽힘 하중, 단축인장 및 이축인장이 작용하는 경우와 r/t가 5, 20인 곡관에 굽힘 하중 및 내압이 작용하는 경우 등 여러 형상에 대한 해석을 수행하였다. 요소 민감도 확인을 위해서는 판 형상에 굽힘 하중이 가해 지는 경우 여러 요소 크기에 대한 해석을 수행하였다. 간략 해석 결과는 크리프 응력과 큰 차이를 보이지 않았지만, $M_{\alpha}-tangent$ method의 경우 요소 크기에 민감하고 ASME코드와 R5코드의 결과는 요소 크기에 민감하지 않았다.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Influence of creep on dynamic behavior of concrete filled steel tube arch bridges

  • Ma, Yishuo;Wang, Yuanfeng;Su, Li;Mei, Shengqi
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.109-122
    • /
    • 2016
  • Concrete creep, while significantly changing the static behaviors of concrete filled steel tube (CFST) structures, do alter the structures' dynamic behaviors as well, which is studied quite limitedly. The attempt to investigate the influence of concrete creep on the dynamic property and response of CFST arch bridges was made in this paper. The mechanism through which creep exerts its influence was analyzed first; then a predicative formula was proposed for the concrete elastic modulus after creep based on available test data; finally a numerical analysis for the effect of creep on the dynamic behaviors of a long-span half-through CFST arch bridge was conducted. It is demonstrated that the presence of concrete creep increases the elastic modulus of concrete, and further magnifies the seismic responses of the displacement and internal force in some sections of the bridge. This influence is related closely to the excitation and the structure, and should be analyzed case-by-case.

어구재료용 신소재섬유의 물성분석 - 2 . 신소재섬유의 크리프특성 및 탄성회복도 - (Physical Properties Analysis of the High-Tech Fibers for Fishing Gear Materials - 2 . Creep Characteristics and Elastic Recovery of the High-tech Fibers -)

  • 김태호;고관서
    • 수산해양기술연구
    • /
    • 제29권3호
    • /
    • pp.191-199
    • /
    • 1993
  • In order to analysis creep characteristics and elastic recovery of the high-tech fibers for fishing gear materials, creep and elasticity tests were carried out on netting twines made of nylon, kevlar 29 and techmilon respectively. After creep tests, the rupture surface of raw materials was observed by scanning electron microscope(SEM). The results obtained are as follows: 1. Netting twines were arranged in order of creep rupture time as follow: techmilon, kevlar 29, nylon. The creep progressive pace was the fastest in techmilon. 2. In order of the creep elongating, netting twines were arranged as follows: nylon, techmilon, kevlar 29. 3. The rupture time T sub(r) decreased almost linearly with the increase of applied load L on the log-log scaled graph. The empirical equations computed for kevlar 29 and techmilon are as follows: T sub(r kevlar 29)=1.9512$\times$1037L super(-15.773). T sub(r techmilon)=2.7146$\times$1016L super(-6.831). 4. It was observed by SEM that creep was progressed in all netting twines. The difference of rupture morphology was recognized clearly in tensile and creep tests. 5. In order of the elastic recovery, netting twines were arranged as follows: techmilon, kevlar 29, nylon.

  • PDF