• Title/Summary/Keyword: Elastic Coupling

Search Result 205, Processing Time 0.025 seconds

Selection of Piezoelectric Materials for Ultrasonic Transudcers (초음파 센서를 위한 압전 세라믹 선택)

  • 노용래
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.107-110
    • /
    • 1992
  • We investigate the influence of individual properties of piezoceramics such as elastic, dielectric, piezoelectric constants, and the coupling factor on the performance of the transducer operating in thickness mode oscillation. The investigation employs equivalent circuit analysis techniques. Appropriate transfer functions are obtained and discussed which suggest optimum selection guides of piezoelectric ceramics for each purpose, i.e. a transmitter, a receiver, and a pulse-echo transducer. The guides can help ceramic scientists find the direction to proceed in new material development.

  • PDF

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

Fabrication and Properties of $(Pb_{1-x}C_{ax})((Co_{\frac{1}{2}}W_{\frac{1}{2}})_yTi_{1-y})O_3+(MnO_2, NiO)$ piezoelectric ceramic (압전세라믹 $(Pb_{1-x}C_{ax})((Co_{\frac{1}{2}}W_{\frac{1}{2}})_yTi_{1-y})O_3+(MnO_2, NiO)$)

  • Mun, Dong-Jin;Do, Si-Hong;Jang, Ji-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.55-63
    • /
    • 1987
  • Modified $PbTiO_3$ piezoelectric ceramics added with 0.2, 0.25, 0.3 mol of $CaCO_3$ and 0.04 mol of $(Co_{\frac{1}{2}}W_{\frac{1}{2}})$ and 0.05 mol of $MnO_2$ and NiO have been fabricated. These ceramics can be poled sufficiently within 10 minutes at $100^{\circ}C$ under about d.c. field of 40 kv/cm. Detailed measurement was performed on dielectric constants, cutie temperatures, elastic and piezoelectric properties and coupling factors for the fabricated ceramics. The most value of the piezoelectric coupling factors was coupling factor of thickness mode kt and its value for 0.25 mol of Ca was about $45\%$. Dielectric constants of $\varepsilon_{33}^T$ and $\varepsilon_{11}^T$ for 0.25 mol of Ca were 242 and 260, and coupling factor ratio (kt/Kp) and Qm were 6 and 357 respectively.

  • PDF

The Vibration Characteristic Improvement by Mode Variation of Ring Type Ultrasonic Motor (리형 초음파모터의 모드가변에 따른 진동특성 개선)

  • 윤신용;김수석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • This paper suggested the vibration characteristic improvement by variation mode of ring type ultrasonic motor. Design for the piezoelectric ceramic and elastic body of stator were calculated by the finite element method(FEM) that consider the resonance frequency, vibration mode and coupling efficiency etc. Through the result of vibration analysis from 6 order mode to 8 mode, the 7 order mode was gained very an excellent results that it was the coupling efficient, minimum power loss and bending vibration value. Here over 7 order mode, was acquired that an output current for input voltage was very a large increased results. The result of vibration calculation, from thickness 0.5[mm] to 2[mm], know the fact that the vibration displacement at 0.5[mm] is an high value too. From such analysis result, this paper was manufactured the ultrasonic motor of outer diameter 50[mm], inter 22[mm] having the about 43.86[KHz] resonance frequency. We have gated that a simulation result is 42.2[KHz] and an experiment result is 43.86[KHz]. Then, a propriety of this paper was established the result almost similar to though comparison, investigation of simulation and experiment result.

Distortional buckling calculation method of steel-concrete composite box beam in negative moment area

  • Zhou, Wangbao;Li, Shujin;Jiang, Lizhong;Huang, Zhi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1203-1219
    • /
    • 2015
  • 'Distortional buckling' is one of the predominant buckling types that may occur in a steel-concrete composite box beam (SCCBB) under a negative moment. The key factors, which affect the buckling modes, are the torsional and lateral restraints of the bottom plate of a SCCBB. Therefore, this article investigates the equivalent lateral and torsional restraint rigidity of the bottom plate of a SCCBB under a negative moment; the results of which show a linear coupling relationship between the applied forces and the lateral and/or torsional restraint stiffness, which are not depended on the cross-sectional properties of a SCCBB completely. The mathematical formulas for calculating the lateral and torsional restraint rigidity of the bottom plate can be used to estimate: (1) the critical distortional buckling stress of SCCBBs under a negative moment; and (2) the critical distortional moment of SCCBBs. This article develops an improved calculation method for SCCBBs on an elastic foundation, which takes into account the coupling effect between the applied forces and the lateral and/or torsional restraint rigidity of the bottom plate. This article analyzes the accuracy of the following calculation methods by using 24 examples of SCCBBs: (1) the conventional energy method; (2) the improved calculation method, as it has been derived in this article; and (3) the ANSYS finite element method. The results verify that the improved calculation method, as it has been proved in this article, is more accurate and reliable than that of the current energy method, which has been noted in the references.

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

A study of piezoelectric element for AE sensor using PZT ceramics (PZT세라믹을 이용한 AE센서의 압전소자 연구)

  • Kwon, O.D.;Yun, Y.J.;Yoo, J.S.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.173-176
    • /
    • 2004
  • The piezoelectric ceramics for AE sensor piezoelectric devices are desirable to possess higher resonance vibrations. The compositions of $0.9Pb(Zr_xTi_{1-x})O_3-0.1Pb(Mn_{1/3}Nb_{1/3}Sb_{1/3})O_3$ (PZT-PMNS) in this work are selected for obtaining especially large electromechanical coupling factor, high mechanical quality factor and high Curie temperature. This ceramic has higher piezoelectric activity and higher electromechanical coupling factor, but the ceramic has lower Curie temperature. The piezoelectric and dielectric characteristics of PZT-PMNS ternary system are investigated as functions of $Ti^{2+}$, $Zi^{2+}$ mol rate. As the results, MPB(morphotropic phase boundary) in this piezoelectric ceramic is x=0.522. Resonance vibrations of PZT ceramics are investigated as ball-bearing drop test. For the use of AE sensor that driving with pre-amplifier, filter circuit after packed this ceramic and an elastic body.

  • PDF

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.