• Title/Summary/Keyword: Ejection temperature

Search Result 68, Processing Time 0.028 seconds

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

Performance Analysis of an Axial Flow Turbine Stage with Coolant Ejection from Stator Trailing Edge (정익 후연의 냉각유체분사를 포함한 축류터빈단의 성능해석)

  • Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.831-840
    • /
    • 1999
  • In this work, an aerothermodynamic calculation model for cooled axial flow turbine blades with trailing edge ejection is suggested and a mean line performance analysis of a turbine stage with nozzle cooling is carried out. A unique model regarding the interaction between coolant and main gas is proposed, while existing correlations are adopted to predict viscous loss and blade outflow angle. The interactions considered are the heat transfer from main gas to coolant and the temperature and pressure losses by the mixing of two streams due to the trailing edge coolant ejection. For a stator blade without ejection, trailing edge loss calculated by the trailing edge analysis is compared with that calculated by loss correlation. The effect of heat transfer effectiveness of coolant passage on the mixing loss is analyzed. For a model turbine stage with nozzle cooling, parametric analyses are carried out to investigate the effect of main design variables(coolant mass flow ratio, temperature and ejection area) on the stage performance.

Influence of Water Temperature and Salinity on Sand Ejection of Manila Clam, Ruditapes philippinarum

  • Kang, Kyoung-Ho;Kim, Jae-Min;Kim, Young-Hun
    • The Korean Journal of Malacology
    • /
    • v.21 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • In this study, the influence of water temperature and salinity on sand ejection of Manila clams, Ruditapes philippinarum, was investigated. The result showed that, under different water temperature, the highest quantity of sand ejection was at $20^{\circ}C$, the value of which was 0.091 g, while the smallest one was only 0.058 g at 0$^{\circ}C$. The highest releasing rate, 95.79%, could be seen in $20^{\circ}C$ group, while $0^{\circ}C$ group was the lowest one, 85.29%. Under different salinity, 30 psu group had the highest value, 0.057 g, and 0 psu (freshwater) group was the lowest one, only 0.026 g. At the same time, the highest releasing rate appeared at 25 psu, which was 90%. 0 psu group was the lowest one in releasing rate, 60.47%. According to these results, we recommend that the clams should be placed into the clear seawater with about 25 psu of salinity at near $20^{\circ}C$ to let the clams perform the self-depuration. Better quality of clams containing less impurity in the aquaculture and commerce could be obtained from this pre-treatment.

  • PDF

Preparation and Characterization of Monosized Germanium Particles by Pulsated Orifice Ejection Method

  • Masuda, Satoshi;Takagi, Kenta;Dong, Wei;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.433-434
    • /
    • 2006
  • Monosized germanium micro particles are prepared by a newly developed Pulsated Orifice Ejection Method. The obtained particles are categorized into two kinds of the microstructures as refined and coarse ones. The morphological difference is estimated to be determined by the undercooling level during nucleation. Actually, the increase in the temperature of the melt was effective in coarsening the microstructure, because the temperature of the melt intensely relates to the undercooling level. The transition temperature of coarse and refined microstructures is found to be 1300-1350K. Furthermore, a triggered nucleation could improve the crystallinity of the particles in the short separation.

  • PDF

Lumped Modeling of Thermal Inkjet Print Head (열 잉크젯 프린트헤드의 집중질량 모델링)

  • Lee You-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.942-949
    • /
    • 2006
  • A lumped model is proposed to predict liquid ejection characteristics of a thermally driven inkjet print head. The model is based on a two-dimensional heat conduction equation, an empirical pressure-temperature equation and a nonlinear hydraulic flow-pressure equation. It has been simulated through the construction of an equivalent R-C circuit, and subsequently analyzed using SIMULINK and a circuit simulation tool, PLECS. Using the model, heating and cooling characteristics of the head are predicted to be in agreement with the IR temperature measurements. The effects of the head geometry on the drop ejection are also analyzed using the nonlinear hydraulic model. The present model can be used as a design tool for a better design of thermal inkjet print heads.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection (사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF

Effect of Water Temperature, Salt and $MgCl_2$, Concentration on Sand Ejection Characteristics of Short Neck Clam, Luditapes philippinarum (수온, 염분 및 염화마그네슘의 농도가 바지락의 토사특성에 미치는 영향)

  • HONG Sang-Pill;KIM Dong-Su;KIM Young-Myung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.114-118
    • /
    • 1997
  • Effect of water temperature, salt and $MgCl_2$ concentration on sand ejection characteristics of short neck clam, Luditapes philippinarum was investigated. Unlike other shell fish such as red shell, arkshell and surf clam, treatment of short neck clam with sea water was evaluated not effective as sand ejection conditions. Sand ejection activity of short neck clam was shown effective at $2.5\%$ NaCl (pH 8.0) at $25^{\circ}C$. This activity was enhanced about 1.57 times when 50 mM $MgCl_2$ were added to the above mentioned conditions. But the extent of sand ejection activity was shown higher in the order of sea water $(3.2\%\;salt)+20mM\;MgCl_2$, sea water $(3.2\%\;salt),\;2.5\%\;NaCl+50mM\;MgCl_2$, treatments. Therefore, it was suggested that habitat conditions and Mg ions could be responsible for biological activity and concominant sand ejection of short neck clam.

  • PDF

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Subsequent Cooling after Ejection (사출 성형품의 금형내 잔류음력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Gwon, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.340-348
    • /
    • 2002
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of thermo-rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint have been done. Free volume theory has been used to represent the non-equilibrium density state during the fast cooling. At ejection, instantaneous deformation takes place due to the redistribution of in-mold residual stress. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of out-of-mold deformation. In this study, emphasis is also made on the treatment with regard to lateral constraint types during molding process. Two typical mold geometries are used to test the numerical simulation modeling developed in this study.