• 제목/요약/키워드: Eigenfrequency

검색결과 42건 처리시간 0.024초

내부 유동이 있는 곡선 파이프의 면내 및 면외 진동 해석 (In-Plane and Out-of-Plane Vibration Analysis of Uniformly Curved Pipes Conveying Fluid)

  • 이수일;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.649-654
    • /
    • 2000
  • The non-linear differential equations of motion of a fluid conveying curved pipe are derived by making use of Hamiltonian approach. The extensible dynamics of the pipe is based on the Euler-Bernoulli beam theory. Some significant differences between linear and nonlinear equations and the basic analysis results are discussed. Using eigenfrequency analysis, it can be shown that the natural frequencies are changed with flow velocity.

  • PDF

복합재료판 구조물의 고유진동수 위상최적화에 관한 연구 (Study on Topology Optimization for Eigenfrequency of Plates with Composite Materials)

  • 김화일;윤혁기;한경민
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1356-1363
    • /
    • 2009
  • The aim of this research is to construct eigenfrequency optimization codes for plates with Arbitrary Rank Microstructures. From among noise factors, resonance sound is main reason for floor's solid noise. But, Resonance-elusion design codes are not fixed so far. Besides, The prediction of composite material's capability and an resonance elusion by controlling natural frequency of plate depend on designer's experiences. In this paper, First, using computer program with arbitrary rank microstructure, variation on composite material properties is studied, and then natural frequency control is performed by plate topology optimization method. The results of this study are as followed. 1) Programs that calculate material properties along it's microstructure composition and control natural frequency on composite material plate are coded by Homogenization and Topology Optimization method. and it is examined by example problem. 2) Equivalent material properties, calculated by program, are examined for natural frequency. In this paper, Suggested programs are coded using $Matlab^{TM}$, Feapmax and Feap Library with Homogenization and Topology Optimization method. and Adequacy of them is reviewed by performing the maximization or minimization of natural frequency for plates with isotropic or anisotropic materials. Since the programs has been designed for widely use. If the mechanism between composite material and other structural member is identified, extension application may be possible in field of structure maintenance, reinforcement etc. through application of composite material.

고유진동수를 이용한 균열탐색에 관한 연구 (A Study on the Crack Detection using Eigenfrequency Test Data)

  • 정명지;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.187-191
    • /
    • 1994
  • 기계구조물내의 균열은 고하중상태에서 갑작스러운 파괴의 주요 원인의 하나로서 이러한 균열의 조기탐지를 위해 기존의 비파괴검사 방법 이외에, 최근 진동측정 및 진동분석을 이용하는 방법이 경제성 및 그 효용성으로 인하여 깊게 연구되고 있다. 이러한 진동특성의 변화를 이용하여 균열을 탐지하는 방법이 많은 학자들에 의해 연구되어졌으며, 현재까지의 연구결과중 균열의 크기 및 위치를 동시에 탐지할 수 있는 방법중에서 비교적 단순, 정확하다고 판단되는 방법으로는 임의의 두 지점에서의 진폭측정을 이용한 Rizos(1)의 방법과 고유진동수 및 모우드형 측정을 이용한 Kam & Lee(2)의 방법이 있으나 이들 방법은 두가지 이상의 진동특성치를 요구하고 있다. 본 연구의 목적은 진동특성치중 고유진동수만을 이용하여 단순부재에서 균열의 크기 및 위치를 수치적으로 예측할 수 있는 새로운 해석기법을 제시하고, 기존 방법 사용시의 결과와 비교 검토하여 그 유용성을 판단하는데 있다.

  • PDF

2MW급 풍력발전기 타워 쉘 두께 설계 연구 (Research for 2MW Wind Turbine Tower Shell Thickness Design)

  • 홍혁수;박진일;방조혁;류지윤;김두훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.301-304
    • /
    • 2006
  • Tower shell design is very important because tower takes about 20% of overall wind turbine cost. This paper contains procedure of tower analysis and optimization content. Some of requirements like eigenfreauency and buckling evaluated by numerical method, strength, are derived by analytic method. But strength and fatigue can be derived by mathematical method simply.

  • PDF

Filtering Technique to Control Member Size in Topology Design Optimization

  • Kim, Tae-Soo;Kim, Jae-Eun;Jeong, Je-Hyun;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.253-261
    • /
    • 2004
  • A simple and effective filtering method to control the member size of an optimized structure is proposed for topology optimization. In the present approach, the original objective sensitivities are replaced with their relative values evaluated within a filtering area. By adjusting the size of the filtering area, the member size of an optimized structure or the level of its topological complexity can be controlled even within a given finite element mesh. In contrast to the checkerboard-free filter, the present filter focuses on high-frequency components of the sensitivities. Since the present filtering method does not add a penalty term to the objective function nor require additional constraints, it is not only efficient but also simple to implement. Mean compliance minimization and eigenfrequency maximization problems are considered to verify the effectiveness of the present approach.

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Lee, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1001-1020
    • /
    • 2016
  • The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.

Free vibration analysis of composite cylindrical shells with non-uniform thickness walls

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1087-1102
    • /
    • 2016
  • The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.

진동 특성을 고려한 마이크로 엑추에이터 판 스프링의 최적설계 (Optimal Design of Micro Actuator Plate Spring Considering Vibration Characteristic)

  • 이종진;이호철;유정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.220-225
    • /
    • 2003
  • Recent issue of optical actuator is applying to mobile device. It leads actuator to become smaller than conventional type. This paper proposes the design of micro actuator plate spring and analysis of its vibration characteristic. Considering natural frequency of spindle motor, 1st and 2nd eigenfrequency of micro actuator must avoid its natural frequency. First, magnetic circuit is designed by using fine pattern coil and magnetic force is acquired by simulation program. Then, concept design is achieved by topology optimization. From concept design, micro actuator plate spring is embodied through DOE(design of experiment). Finally, considering vibration characteristic simultaneously, optimal plate spring design is determined by RSM(response surface method).

  • PDF

Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory

  • Viswanathan, K.K.;Javed, Saira;Aziz, Zainal Abdul
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.259-275
    • /
    • 2013
  • Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness is analyzed under shear deformation theory with different boundary conditions by applying collocation with spline approximation. Linear and exponential variation in thickness of layers are assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and obtained a generalized eigenvalue problem. This problem is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of three and five-layered conical shells, made up of two different type of materials are considered. Parametric studies are made for analysing the frequencies of the shell with respect to the coefficients of thickness variations, length-to-radius ratio, length-to-thickness ratio and ply angles with different combination of the materials. The results are compared with the available data and new results are presented in terms of tables and graphs.

이동부하를 가지고 병진운동하는 유연보의 운동 해석 (Motion analysis of a Translating Flexible Beam Carrying a Moving Mass)

  • 박상덕;정완균;염영일
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.204-212
    • /
    • 1999
  • In this paper, the vibrational motion of a flexible beam clamped on a translating base and carrying a moving mass is investigated. The equations of motion which describe the total dynamics of the beam-mass-cart system are derived and the coupled dynamic equations are solved by unconstrained modal analysis. In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies for the position of the moving mass and the ratios of the mass of the flexible beam, the moving mass and the base cart are used. Proper transformations of the time solutions between the normal modes for a position and those for the next position of the moving mass are also adopted. Numerical simulations are carried out to obtain the open-loop responses of the system in tracking the pre-designed path of the moving mass.

  • PDF