• Title/Summary/Keyword: Efficient solutions

Search Result 1,312, Processing Time 0.025 seconds

An Efficient Evolutionary Algorithm for the Fixed Charge Transportation Problem (고정비용 수송문제를 위한 효율적인 진화 알고리듬)

  • Soak, Sang-Moon;Chang, Seok-Cheoul;Lee, Sang-Wook;Ahn, Byung-Ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The transportation problem (TP) is one of the traditional optimization problems. Unlike the TP, the fixed charge transportation problem (FCTP) cannot be solved using polynomial time algorithms. So, finding solutions for the FCTP is a well-known NP-complete problem involving an importance in a transportation network design. So, it seems to be natural to use evolutionary algorithms for solving FCTP. And many evolutionary algorithms have tackled this problem and shown good performance. This paper introduces an efficient evolutionary algorithm for the FCTP. The proposed algorithm can always generate feasible solutions without any repair process using the random key representation. Especially, it can guide the search toward the basic solution. Finally, we performed comparisons with the previous results known on the benchmark instances and could confirm the superiority of the proposed algorithm.

Efficient Simulation Method for Dielectric Barrier Discharge Load

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.188-196
    • /
    • 2004
  • The dielectric barrier discharge is recognized as one of the efficient methods of ultraviolet light generation and ozone production. As well, it is widely utilized for gaseous wastes neutralization and other technological processes in industry. This electrochemical reaction is electrically equivalent to a nonlinear capacitive load that represents some difficulties for designing the power supply. Therefore, a conventional power supply is designed for a drastically simplified model of the load and generally is not optimal. This paper presents a fast simulation approach for the nonlinear capacitive model representation of the dielectric barrier discharge load lamp. The main idea of the proposed method is to use analytical solutions of the differential state equations for the load and find the unknown initial conditions for the steady state by an optimization method. The derived expressions for the analytical solutions are rather complicated, however they greatly reduce the calculation time, which make sense when a deeper analysis is performed. This paper introduces the proposed simulation method and gives some examples of its application such as estimation of the load equivalent parameters and load matching conditions.

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Optimization of 3G Mobile Network Design Using a Hybrid Search Strategy

  • Wu Yufei;Pierre Samuel
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.471-477
    • /
    • 2005
  • This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a post­optimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.

An Energy Efficient Re-clustering Algorithm in Wireless Sensor Networks (무선센서네트워크에서의 에너지 효율적인 재클러스터링 알고리즘)

  • Park, Hye-bin;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • Efficient energy consumption is a one of the key issues in wireless sensor networks. Clustering-based routing algorithms have been popular solutions for such an issue. Re-clustering is necessary for avoiding early energy drain of cluster head nodes in such routing strategies. The re-clustering process itself, however, is another source of energy consumption. It is suggested in this work to adaptively set the frequency of re-clustering by comparing the energy levels of cluster heads and a threshold value. The algorithm keeps the clusters if all the cluster heads' energy levels are greater than the threshold value. We confirm through simulations that the suggested algorithm shows better energy efficiency than the existing solutions.

CREEC: Chain Routing with Even Energy Consumption

  • Shin, Ji-Soo;Suh, Chang-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • A convergecast is a popular routing scheme in wireless sensor networks (WSNs) in which every sensor node periodically forwards measured data along configured routing paths to a base station (BS). Prolonging lifetimes in energy-limited WSNs is an important issue because the lifetime of a WSN influences on its quality and price. Low-energy adaptive clustering hierarchy (LEACH) was the first attempt at solving this lifetime problem in convergecast WSNs, and it was followed by other solutions including power efficient gathering in sensor information systems (PEGASIS) and power efficient data gathering and aggregation protocol (PEDAP). Our solution-chain routing with even energy consumption (CREEC)-solves this problem by achieving longer average lifetimes using two strategies: i) Maximizing the fairness of energy distribution at every sensor node and ii) running a feedback mechanism that utilizes a preliminary simulation of energy consumption to save energy for depleted Sensor nodes. Simulation results confirm that CREEC outperforms all previous solutions such as LEACH, PEGASIS, PEDAP, and PEDAP-power aware (PA) with respect to the first node death and the average lifetime. CREEC performs very well at all WSN sizes, BS distances and battery capacities with an increased convergecast delay.

Problems and Solutions for the Private-funded Railroad Station Project Management (철도 민자역사 사업수행체계 개선방안)

  • Park Chan-Sik;Jeon Yong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.172-180
    • /
    • 2004
  • Recently, there are growing concerns on the introduction of private financing in railroad station construction project. But private-funded station project does not have the efficient delivery system. This study is focused on the recommended solutions about the private-funded station project management. Through the literature survey and interview, it is investigated and analyzed that project management has the problems. The problems are classified as 2 areas: law & regulations and job practice. The problems in law & regulations are a lowing on the profitability, and an unreasonable project team selection process. Job practice has problems such as delaying in authorization process, and inferior feasibility analysis. The study suggests several recommended solutions related to the problem areas. That are as follows: the efficient return of investment system, the project financing system, the professional project management, the benchmarking team operation, and the cut down on discussion period

Energy-efficient Positioning of Cluster Heads in Wireless Sensor Networks

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • As one of the most important requirements for wireless sensor networks, prolonging network lifetime can be realized by minimizing energy consumption in cluster heads as well as sensor nodes. While most of the previous researches have focused on the energy of sensor nodes, we devote our attention to cluster heads because they are most dominant source of power consumption in the cluster-based sensor networks. Therefore, we seek to minimize energy consumption by minimizing the maximum(MINMAX) energy dissipation at each cluster heads. This work requires energy-efficient clustering of the sensor nodes while satisfying given energy constraints. In this paper, we present a constraint satisfaction modeling of cluster-based routing in a heterogeneous sensor networks because mixed integer programming cannot provide solutions to this MINMAX problem. Computational experiments show that substantial energy savings can be obtained with the MINMAX algorithm in comparison with a minimum total energy(MTE) strategy.

  • PDF

A Study on Approximate and Exact Algorithms to Minimize Makespan on Parallel Processors (竝列處理機械상에서 總作業完了時間의 最小化解法에 관한 硏究)

  • Ahn, Sang-Hyung;Lee, Song-Kun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.14-35
    • /
    • 1991
  • The purpose of this study is to develop an efficient exact algorithm for the problem of scheduling n in dependent jobs on m unequal parallel processors to minimize makespan. Efficient solutions are already known for the preemptive case. But for the non-preemptive case, this problem belongs to a set of strong NP-complete problems. Hence, it is unlikely that the polynomial time algorithm can be found. This is the reason why most investigations have bben directed toward the fast approximate algorithms and the worst-case analysis of algorithms. Recently, great advances have been made in mathematical theories regarding Lagrangean relaxation and the subgradient optimization procedure which updates the Lagrangean multipliers. By combining and the subgradient optimization procedure which updates the Lagrangean multipliers. By combining these mathematical tools with branch-and-bound procedures, these have been some successes in constructing pseudo-polynomial time algorithms for solving previously unsolved NP-complete problems. This study applied similar methodologies to the unequal parallel processor problem to find the efficient exact algorithm.

  • PDF