• Title/Summary/Keyword: Efficiency of Estimator

Search Result 237, Processing Time 0.021 seconds

ESTIMATING VARIOUS MEASURES IN NORMAL POPULATION THROUGH A SINGLE CLASS OF ESTIMATORS

  • Sharad Saxena;Housila P. Singh
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.3
    • /
    • pp.323-337
    • /
    • 2004
  • This article coined a general class of estimators for various measures in normal population when some' a priori' or guessed value of standard deviation a is available in addition to sample information. The class of estimators is primarily defined for a function of standard deviation. An unbiased estimator and the minimum mean squared error estimator are worked out and the suggested class of estimators is compared with these classical estimators. Numerical computations in terms of percent relative efficiency and absolute relative bias established the merits of the proposed class of estimators especially for small samples. Simulation study confirms the excellence of the proposed class of estimators. The beauty of this article lies in estimation of various measures like standard deviation, variance, Fisher information, precision of sample mean, process capability index $C_{p}$, fourth moment about mean, mean deviation about mean etc. as particular cases of the proposed class of estimators.

On Practical Efficiency of Locally Parametric Nonparametric Density Estimation Based on Local Likelihood Function

  • Kang, Kee-Hoon;Han, Jung-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.607-617
    • /
    • 2003
  • This paper offers a practical comparison of efficiency between local likelihood approach and conventional kernel approach in density estimation. The local likelihood estimation procedure maximizes a kernel smoothed log-likelihood function with respect to a polynomial approximation of the log likelihood function. We use two types of data driven bandwidths for each method and compare the mean integrated squares for several densities. Numerical results reveal that local log-linear approach with simple plug-in bandwidth shows better performance comparing to the standard kernel approach in heavy tailed distribution. For normal mixture density cases, standard kernel estimator with the bandwidth in Sheather and Jones(1991) dominates the others in moderately large sample size.

On inference of multivariate means under ranked set sampling

  • Rochani, Haresh;Linder, Daniel F.;Samawi, Hani;Panchal, Viral
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • In many studies, a researcher attempts to describe a population where units are measured for multiple outcomes, or responses. In this paper, we present an efficient procedure based on ranked set sampling to estimate and perform hypothesis testing on a multivariate mean. The method is based on ranking on an auxiliary covariate, which is assumed to be correlated with the multivariate response, in order to improve the efficiency of the estimation. We showed that the proposed estimators developed under this sampling scheme are unbiased, have smaller variance in the multivariate sense, and are asymptotically Gaussian. We also demonstrated that the efficiency of multivariate regression estimator can be improved by using Ranked set sampling. A bootstrap routine is developed in the statistical software R to perform inference when the sample size is small. We use a simulation study to investigate the performance of the method under known conditions and apply the method to the biomarker data collected in China Health and Nutrition Survey (CHNS 2009) data.

A Sequential Approach for Estimating the Variance of a Normal Population Using Some Available Prior Information

  • Samawi, Hani M.;Al-Saleh, Mohammad F.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.433-445
    • /
    • 2002
  • Using some available information about the unknown variance $\sigma$$^2$ of a normal distribution with mean $\mu$, a sequential approach is used to estimate $\sigma$$^2$. Two cases have been considered regarding the mean $\mu$ being known or unknown. The mean square error (MSE) of the new estimators are compared to that of the usual estimator of $\sigma$$^2$, namely, the sample variance based on a sample of size equal to the expected sample size. Simulation results indicates that, the new estimator is more efficient than the usual estimator of $\sigma$$^2$whenever the actual value of $\sigma$$^2$ is not too far from the prior information.

Extended Quasi-likelihood Estimation in Overdispersed Models

  • Kim, Choong-Rak;Lee, Kee-Won;Chung, Youn-Shik;Park, Kook-Lyeol
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.187-200
    • /
    • 1992
  • Samples are often found to be too heterogeneous to be explained by a one-parameter family of models in the sense that the implicit mean-variance relationship in such a family is violated by the data. This phenomenon is often called over-dispersion. The most frequently used method in dealing with over-dispersion is to mix a one-parameter family creating a two parameter marginal mixture family for the data. In this paper, we investigate performance of estimators such as maximum likelihood estimator, method of moment estimator, and maximum quasi-likelihood estimator in negative binomial and beta-binomial distribution. Simulations are done for various mean parameter and dispersion parameter in both distributions, and we conclude that the moment estimators are very superior in the sense of bias and asymptotic relative efficiency.

  • PDF

Link Voltage Adjustment Converter Employing Load Power Estimator for Notebook Computer Adaptor

  • Choi, Seong-Wook;Lee, Byoung-Hee;Lee, Keun-Wook;Ryu, Byoung-Woo;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.348-350
    • /
    • 2008
  • A link voltage adjustment converter employing load power estimator for notebook computer adaptor is proposed. It is consisted of the boost converter as a power factor correction stage and the LLC resonant converter as a DC/DC conversion stage with a newly introduced link voltage adjustment method employing load power estimator, which helps to reduce the transformer size and peak of output voltage ripple, maintaining high efficiency over all the load condition. Experimental results with 85W converter are given to verify the validity of the proposed circuit.

  • PDF

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

On Confidence Intervals of Robust Regression Estimators (로버스트 회귀추정에 의한 신뢰구간 구축)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.97-110
    • /
    • 2006
  • Since it is well-established that even high quality data tend to contain outliers, one would expect fat? greater reliance on robust regression techniques than is actually observed. But most of all robust regression estimators suffers from the computational difficulties and the lower efficiency than the least squares under the normal error model. The weighted self-tuning estimator (WSTE) recently suggested by Lee (2004) has no more computational difficulty and it has the asymptotic normality and the high break-down point simultaneously. Although it has better properties than the other robust estimators, WSTE does not have full efficiency under the normal error model through the weighted least squares which is widely used. This paper introduces a new approach as called the reweighted WSTE (RWSTE), whose scale estimator is adaptively estimated by the self-tuning constant. A Monte Carlo study shows that new approach has better behavior than the general weighted least squares method under the normal model and the large data.

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2002.11a
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

L-Estimation for the Parameter of the AR(l) Model (AR(1) 모형의 모수에 대한 L-추정법)

  • Han Sang Moon;Jung Byoung Cheal
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.43-56
    • /
    • 2005
  • In this study, a robust estimation method for the first-order autocorrelation coefficient in the time series model following AR(l) process with additive outlier(AO) is investigated. We propose the L-type trimmed least squares estimation method using the preliminary estimator (PE) suggested by Rupport and Carroll (1980) in multiple regression model. In addition, using Mallows' weight function in order to down-weight the outlier of X-axis, the bounded-influence PE (BIPE) estimator is obtained and the mean squared error (MSE) performance of various estimators for autocorrelation coefficient are compared using Monte Carlo experiments. From the results of Monte-Carlo study, the efficiency of BIPE(LAD) estimator using the generalized-LAD to preliminary estimator performs well relative to other estimators.