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On Practical Efficiency of Locally Parametric Nonparametric
Density Estimation Based on Local Likelihood Function!)
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Abstract

This paper offers a practical comparison of efficiency between local likelihood
approach and conventional kernel approach in density estimation. The local likelihood
estimation procedure maximizes a kernel smoothed log-likelihood function with respect
to a polynomial approximation of the log likelihood function. We use two types of
data driven bandwidths for each method and compare the mean integrated squares for
several densities. Numerical results reveal that local log-linear approach with simple
plug-in bandwidth shows better performance comparing to the standard kemnel
approach in heavy tailed distribution. For normal mixture density cases, standard
kernel estimator with the bandwidth in Sheather and Jones(1991) dominates the others
in moderately large sample size.
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1. Introduction

Let {X,,:,X,} denote independent and identically distributed random sample drawn from
the population density £. In the parametric setting, the density is usually modelled by a finite
dimensional vector of parameters which has the form f(x, ). Then, an estimator of the
density is F(x, ), which is obtained by plugging in the usual maximum likelihood estimator
?. In contrast, nonparametric approaches do not assume the parametric family of densities

and the standard nonparametric kernel estimator of f is

7 (x) = n”! gl K,(x—X;), (1.1)
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where K,(:)=(1/BK(-/h) for a "kernel function” K, which is open taken to be a
smooth, bounded and symmetric probability density and a “bandwidth” or "smoothng

parameter” #.
The basic properties of such a kernel estimator are well known and these include

E{ 7:(0) = A0 +5 Brof 0+ o(h?),
(1.2)
Var{ 7,(x)}=(uk) "' R(K) f(x)+ o{(nh) ™'},

where x,= f 2’K(2)dz and R(K)= f K(2)%dz. See for example, Wand and Jones(1935,

pp.20-21).

Local likelihood function is proposed by Tibshirani and Hastie(1987) as a method of
approximating non-Gaussian regression model such as logistic regression and proportional
hazards model by local polynomial. Extensions of local likelihood methods to the nonparmet:ic
density estimation setting are made by Loader(1996) and Hjort and Jones(1996). The properties
of local likelihood density estimation with large bandwidth is described in Eguchi aad
Copas(1998), which corresponds to the case when the underlying true density is parametric or
near parametric. When the parametric estimator is unsuitable for the data, nonparametric
aspect of the local likelihood estimation is needed and asymptotic properties of this approach
with small bandwidth is presented in Park, Kim and Jones(2002).

Hall and Tao(2002) argue that standard kernel methods have comparable properties to the
local likelihood approach in terms of asymptotic mean integrated squared error comparison.
However, non of the aforementioned papers explore the practical comparison of performance of
these estimators. Main purpose of this paper is to make such comparison and explore the
behavior of local likelihood density estimator with data driven bandwidths. Our approaches and
results have close relation with Hjort and Jones(1996) and Hall and Tao(2002).

The remaining sections of this paper are as follows. Section 2 gives a brief introduction of
local likelihood density estimation and explores its properties. Two types of bandwidth
selection methods for local log-linear density estimator and standard kernel density estimator
are briefly described in section 3. Numerical comparison between these two estimators s

summarized in section 4. Some concluding remarks are given in section 5.

2. Local likelihood Approach

The log-likelihood function of observations Xj,:*,X, with unknown density f is

L(H= 3 log (X)) — nl [ fx)dx—1). @1
1=1

By Loader(1996) and Hjort and Jones(1996), local likelihood function around each x can be
defined as
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L0 =n" B X"k"‘)logf(x,-)—fK( U ) f() du 22)
This corresponds to the localized version of the log-likelihood, which gives more weight to
data in the region of an estimating point x, and less weight to observations elsewhere in the
sample space.

The local likelihood estimation procedure maximizes a kernel smoothed log-likelihood
function (2.2) with respect to a polynomial approximation of the log likelihood function in a
neighborhood of the fitting point x. That is, logf(#) =~ P(x#—x)(in one dimension) with

Plu—x)=0y+ 8, (u—x)++6,(u—x)”. By plugging this into (2.2), this approximation

gives the following local likelithood function :

- X;— —~
L,G.x)=n"t B K5 )P =0~ [E(5E Jeo(P(u—aDdu.  @3)
Then, local likelihood density estimate is defined by
F(x) = exp( 8y), (2.4)

where ( ¥y, 9;,, 8,) is the maximizer of (23). See Loader(1996) and Hjort and
Jones(1996) for more precise definition.
In this paper, we shall focus our attention on the case of p=1, which results in local

log-linear estimator denoted by }L. (Let us denote standard kernel density estimator (1.1) by

7x.) That is, we consider the local model aexp (b(u—x)) and the corresponding score

function is (1/a, u—x)’, and the two equations to solve, in order to maximize the local
likelihood, are

n! Z1K”(Xi —x)( Xl./_ax) = th(u—x)( uliax)aexp(b(u—x))du. (25)

Note that the resulting local linear estimator f,(x)= a(x) , where a(x) is the solution of
equation (2.5).
As noted by Loader(1996) and Hjort and Jones(1996), f, has the following bias and
variance expression !
E{ F. (0} = £ + 5 By bl(2) + o),

(2.6)
Var{ 7.0(x)} = (nh) 'R(K) f(x)+ o{(nh) ™'},

where b(x)=F?(x) — £ (x)?f(x) L.

Comparing (2.6) with (1.2), variance is the same and the difference is in the bias. The local
linear estimate is better when |6(x)|<|F?(x)|. In the central part of the distribution, either

of the bias can be the larger. The two bias terms are equal whenever f'(x)=0, suggesting
the estimates would have similar performance near the modes and troughs in the density.
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Hall and Tao(2002) made a global comparison by introducing the mean integrated squared
error (MISE) expression of each estimator. From (1.2) and (2.6), both estimators have the
following MISE expression :

MISE (h) = E [ (X2) — f(x)?dx = h* [ 6(x)%dx + (n) " ROKO), @7)

where b(x)=bx(x)=x,/P(x)/2 for F= Fx and b(x)=b(x) =1, {fP(x)— £ (D% () }/2

for F= ?L. Simple calculation results in
2
be(x) dx = fbK(x) a+ 75 xzf 7 )2 (2.8)

which implies that be(x)zdx> fbK(x)zdx, and so the kernel estimator is superior in terms

of global performance. The variance term in the formula (2.7) is the same for both of kernel
and local likelihood estimator.

When we use the Gaussian kernel function, the solution of equation (2.5) has a simple
expression, which relates to standard kernel estimator. This can be obtained by letting

W)= f exp(uz)K(z)dz, which is the moment generating function of K. Then, the two
equations in (2.5) becomes
7t 3 Ky(X, — 0= ag(bh),
(2.9)
"t 2 Ky (X = (X; — ) = ah¢ (bh).

In fact, ¢(2)=exp(u?/2) for Gaussian kernel. In this case, solving two equations in (2.9)

results in
FL@= 2= Tx@exol -5 K Tk’ (D] Tx(0))*]. (210

See section 5.2 of Hjort and Jones(1996) for more details. We shall compare the empirical
performance of this local log-linear estimator 7. with standard kernel estimator Fx in

section 4.
3. Bandwidth Selection

Both of the standard kernel estimation and local likelihood estimation procedure described in
the previous section highly depend on the selection of bandwidth. There is an extensive
literature on the bandwidth choice in the standard kernel density estimation. A brief survey of
those selection methods is presented in Jones et al.(1996). However, there are few results on
the bandwidth selection for the local likelihood density estimation. This section describes some
of bandwidth selectors which are used as data driven bandwidths in this paper.
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First, we begin with cross-validatory bandwidth selector for standard kernel density
estimation. Cross-validation is a popular, utilitarian method for choosing bandwidth in curve
estimation. Not least among its attractive features are the very wide range of contexts where
it may be applied. Comparing to the other selection criteria, it does not require any auxiliary
stage of estimation. It also has demerits that the resulting bandwidth is more highly variable
than that selected by a plug-in rule; see for example Park and Marron(1990) and Park and
Turlach(1992). However in many circumstances, for example where oversmoothing can obscure
important features of a curve, it performs well; see for example Loader(1999).

As is well known, the least square cross-validation function for standard kernel density
estimator is defined by

CVim = [ Fatdv—2n"t B, P, A XD, 3.1

where 7, _{x)=(n—1)""! 5;1{ #(x—X;) is the density estimate based on the sample
I¥F1

with X, deleted. Then, the cross-validation bandwidth is obtained by minimizing (3.1) with

respect to % and denoted by oy .

The second one for standard kernel density estimate is proposed by Sheather and
Jones(1991), which belongs to the second generation classified by Jones et al.(1996). This is
known to be the best one for the standard kernel estimator in terms of overall performance.
The idea is motivated by the formula for minimizing asymptotic MISE and to take i’l\s] to be

the solution of the following equation :

_ _ﬂ&— /5
g [x%@(r(h»n] : 32

where ¢,(7(h)) is the estimate of ¢, = f O f (x) dx = f F@(x)? dx with the bandwidth

y, which is a function of %. Detailed procedure and example are described in Wand and
Jones(1995).(See, pp. 74-75).

Now, let us consider the bandwidth choice for the local likelihood approach. Recall that the
asymptotic mean integrated squared error of the local likelihood approach has the following

form :
MISE ( F1; 1) =1 k' [ (7P = F (DY Y)Y dw + (n) " ROE). (33)
The bandwidth which minimizes the above MISE is expressed by
h={R(K)xD PR(fP— 271715y~ (34)

By plugging an estimate of R( P =721 into equation (34), we obtain the bandwidth

estimate and denoted by % p.
Cross-validation function for the local likelihood estimate is similar to equation (3.1), which
is defined by
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Cviw = [ FoCemPdi—an™t B T, AXih), (55

where F1,_A{X;;h) is the local log-linear density estimate with i-th observation is deletad.
Then, the cross—validation bandwidth for local likelihood estimate is the minimizer of equation
(3.5), which is denote by ﬁLC- Comparing to % Lp, it has the advantage that does not involve

other estimation stage related to function of f.
4. Numerical Comparison

This section is devoted to comparing the small sample performance of the ordinary kernel
density estimators ( 7x) with that of the local log-linear estimators ( 7,) on simulated data
sets. Two versions of bandwidth selector, which is described in section 3, are considered for
each estimator. The standard Gaussian kernel was used throughout.

We shall summarize results obtained from simulated data drawn from four target
distributions proposed by Marron and Wand(1992) and two other distributions. See Table 1 for
the distributions, and Figure 1 for graphs of the corresponding densities. Distributions #1 and
#5 were chosen because they represent opposite extremes in terms of tail weight, distribution
#2 represents bimodal, distribution #3 is separated bimodal, density #4 is trimodal, and density
#6 is highly skewed with a long, relatively flat portion. The results given here are for cases

of sample sizes #=25, 50, 100 and 200, and derived from 500 simulations in each setting.
We employ a grid search over a fine grid of £, for estimating cross-validation bandwidth
in both settings of local likelihood and standard kernel estimators. We use MISE as a

measure of performance of estimators, which is defined by MISE (%)= E f ( 7.~ 1F)?%, since

it is preferred because of its simplicity and mathematical conveniences. Instead of arranging
quite a lot of tables which contain MISEs and their standard errors, we shall display some
figures which is visually interpreted. Tables on this simulation result may be available from
the first author.

Let us denote local log-linear density estimator with plug-in bandwidth(from equation (3.4))

and cross-validation bandwidth(from (35)) by 7Fip and Fic, respectively. And standard

kernel estimator with Sheather and Jones(1991) bandwidth(from (3.2)) and cross-validation

bandwidth(from (3.1)) are denoted by ?5] and Fcy, respectively.

Figure 2 depicts the relative efficiencies of Fip to Fic, 751 and 1 cv in each sample size.
That is, vertical values correspond to the ratios of MISE of F.p relative to the other three
estimators. Except distribution #3, 7ip shows the best behavior when the sample size is

relatively small. As the sample size grows ?S] has better performance in all target densities
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except #(2) distribution. ?Lc is not comparable to the others except for density #5 and Fcy
is the best for density #3. This means both of local likelihood estimator and kernel estimator
are highly dependent on the choice of the bandwidths.

The performance of local likelihood estimator ?LP and F.c is the worst for the distribution
#3 among our simulations, This density has a trough which has very low density and
relatively sharp two modes. When the density is very close to zero, there is a difficulty in
modelling by a local polynomial since the zero is a singularity of the log density. The
greatest benefit of using local likelihood estimator is enjoyable for the distribution #5, which is
Student’s #(2) case. This density has relatively heavy tails and the pointwise bias term in
(2.6) is smaller than that for standard kernel estimator for wide range. This property can be
conveyed to the other densities which have heavy tails. For all distributions, we have
examined the integrated variance (IVAR) and the integrated bias square (IBIAS) separately.
We found that IVAR of the local likelihood estimator is almost the same or smaller than that
for standard kernel estimator. But, the IBIAS is relatively large except for the density #3.

To have a more careful comparison between the distribution #1 and #5, we plot the MISE,

integrated variance (IVAR) and integrated bias square (IBIAS) as a function of /% in the
logarithmic scale, for sample size 100. Figure 3 shows the result. From this figure, the better
performance of Fpp in distribution #5 came from smaller bias than the standard kernel

estimator although it’s not so big. Note that the scale of vertical axes in variance and bias is
different.
We note that there is room for improvement of performance of local log-linear density

estimator. This may be possible by computing 7x’(x), which is in the definition of ?L in

equation (2.10), separately from fx(x) with a somewhat larger bandwidth and a different

kernel. This is because local slope estimations typically require larger bandwidth than for focal
level estimation. We do not pursue this here.

5. Concluding Remarks

We have examined the performance of the local log-likelihood density estimator with data
driven bandwidths via numerical simulation. Overall, the results in section 4 coincide with the
theoretical arguments in Hall and Tao(2002). Note that % is the best bandwidth for
standard kernel estimation in terms of theory and practice. If one suggest a good data driven

bandwidth for the local likelihood approach, the performance can be more improved. This
problem has not been dealt yet and should be studied in the future. One other possibility of

enhancing the performance of local likelihood estimation is allowing the bandwidth % to vary

as a function of x or X.;.
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Table 1. Definitions of six distributions

Distribution Definition
#1 Gaussian N0, 1)
42 Bimodal LN +d a2y
2 '3 2 >3
- Ay 3 (Lyey, 13 (152
#3 Separated bimodal 5 N(=5.(5)9)+ 2N(2’(2) )
; 9 a6 3yv2y 9 a6 3y2y, 1 By
#4 Trimodal 2ON( 5,(5) )+ ZON(5’(5) )+ lON(O’(4) )
#5 Heavy tailed t(2)
. oa—q (3y2y, L Sy2y, 3 352
#6 Highly skewed 50 N(—1,( 5) )+2 N(1,( 2) )+20 N(5,( 2) )
#1
....... "
'''' -  #3
—— #4

Density
Density

Figure 1. Graphs of true distributions. Graphs of six Normal mixture densities and Density
#1 is standard Normal, density #2 is bimodal, density #3 is separated bimodal, density #4 is
trimodal, density #5 is Student’s # density with two degrees of freedom, and density #6 is

highly skewed with a long, relatively flat portion.
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Figure 2. Efficiency plots. Relative efficiency versus sample size, where vertical values

corresponds to the ratios of MISE of the 7.p, relative to 714 *), Fok) and  Fof+).
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Figure 3. Comparison between N(0,1) and #(2) density. Mean integrated squared
errors(MISE), integrated variances(IVAR) and integrated bias squares(IBIAS) plots versus
log (%). Vertical axes are in logarithmic scale. The left panel corresponds to N(0, 1) and the
right panel to #(2) density. Solid line corresponds to the local likelihood density estimator and
the dashed line corresponds to the standard kernel estimator.



