Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.2.126

Efficiency Enhancement in Organic Polymer Solar Cells with Ferroelectric Films  

Park, Jayoung (Department of Laser and Optical Information Technology, Cheongju University)
Jung, Chi Sup (Department of Laser and Optical Information Technology, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.2, 2017 , pp. 126-132 More about this Journal
Abstract
The power conversion efficiency of organic polymer solar cells was enhanced by introducing a ferroelectric polymer layer at the interface between active layer and metal electrode. The power conversion efficiency was increased by 50% through the enhancement of the open circuit voltage. To investigate the role of the ferroelectric layer on the dissociation process of the excitons, non-radiative portion of the exciton decay was directly measured by using photoacoustic technique. The results show that the ferroelectric nature of the buffer layer does not play any roles on the dissociation process of the excitons, which indicates the efficiency enhancement is not due to the ferroelectricity of the buffer layer.
Keywords
Organic solar cells; Ferroelectric polymer; P(VDF-TrFE); Exciton; Non-radiative recombination; Photoacoustic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001). [DOI: https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A]   DOI
2 C. Pang, K. Park, D. Jung, and H. Chae, Applied Science and Convergence Technology, 16, 167 (2007).
3 T. Kirchartz, K. Taretto, and U. Rau, J. Phys. Chem. C, 113, 17958 (2009). [DOI: https://doi.org/10.1021/jp906292h]   DOI
4 C. Deibel, D. Mack, J. Gorenflot, A. Scholl, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, Pyhs. Rev. B, 81, 085202 (2010). [DOI: https://doi.org/10.1103/PhysRevB.81.085202]   DOI
5 X. Y. Zhu, Q. Yang, and M. Muntwiler, Acc. Chem. Res., 42, 1779 (2009). [DOI: https://doi.org/10.1021/ar800269u]   DOI
6 V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006). [DOI: https://doi.org/10.1063/1.2335377]   DOI
7 J. Y. Park and C. S. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 589 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.9.589]
8 K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram, H. K. Kodali, S. Bose, Y. Chen, J. W. Petrich, B. Ganapathysubramanian, and S. Chaudhary, Energy & Environmental Science, 5, 7042 (2012). [DOI: https:// doi.org/10.1039/c2ee03478f]   DOI
9 Y. Yuan, T. J. Reece, P. Sharma, and S. Ducharme, Nat. Mater., 10, 296 (2011). [DOI: https://doi.org/10.1038/nmat2951]   DOI
10 P. Wurfel, I. P. Batra, and J. T. Jacobd, Phys. Rev. Lett., 30, 1218 (1973). [DOI: https://doi.org/10.1103/PhysRevLett.30.1218]   DOI
11 P. Wurfel and I. P. Batra, Pyhs. Rev. B, 8, 5126 (1973). [DOI: https://doi.org/10.1103/PhysRevB.8.5126]   DOI
12 K. Asadi, P. Bruyn, P.W.M. Blom, and D. M. de Leeuw, Appl. Phys. Lett., 98, 183301 (2011). [DOI: https://doi.org/10.1063/1.3587630]   DOI
13 Y. Yuan, P. Sharma, Z. Xiao, S. Poddar, A. Gruverman, S. Ducharme, and J. Huang, Energy & Environmental Science, 5, 8558 (2012). [DOI: https://doi.org/10.1039/c2ee22098a]   DOI
14 J. Kim, H. You, S. Ducharme, and S. Adenwalla, J. Phys. Condens. Matter, 19, 086206 (2007). [DOI: https://doi.org/10.1088/0953-8984/19/8/086206]   DOI
15 E.K.M. Siu and A. Mandelis, Pyhs. Rev. B, 34, 7222 (1986). [DOI: https://doi.org/10.1103/PhysRevB. 34.7222]   DOI
16 A. Mandelis and E.K.M. Siu, Pyhs. Rev. B, 34, 7209 (1986). [DOI: https://doi.org/10.1103/PhysRevB. 34.7209]   DOI