• Title/Summary/Keyword: Effector

Search Result 836, Processing Time 0.042 seconds

Characterization of Phytophthora capsici effector genes and their functional repertoire

  • Arif, Saima;Lim, Gi Taek;Kim, Sun Ha;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.643-654
    • /
    • 2021
  • Phytophthora capsici is one of the most destructive hemibiotrophic pathogens; it can cause blight in chili peppers, and secrete various effector proteins to infect the plants. These effectors contain an N-terminal conserved RXLR motif. Here, we generated full-length RXLR effector coding genes using primer pairs, and cloned them into the pGR106 vector for in planta expression. Two of these genes, PcREK6 and PcREK41 (P. capsici RXLR effector from the Korea isolate), were further characterized. PcREK6 and PcREK41 genes showed that they encode effector proteins with a general modular structure, including the N-terminal conserved RXLR-DEER motif and signal peptide sequences. PcREK6 and PcREK41 expressions were strongly induced when the chili pepper plants (Capsicum annuum) were challenged with P. capsici. These results provide molecular evidence to elucidate the virulence or avirulence factors in chili pepper. Our results also showed that two effectors induce hypersensitive response (HR) cell death when expressed in chili leaves. Cell death suppression assays in Nicotiana benthamiana revealed that most effectors could not suppress programmed cell death (PCD) triggered by Bcl-associated X (BAX) or Phytophthora infestans elicitin (INF1). However, PcREK6 fully suppressed PCD triggered by BAX, while PcREK41 partially suppressed PCD triggered by INF1 elicitin. These results suggest that PcREK effectors from P. capsici interact with putative resistance (R) proteins in planta, and different effectors may target different pathways in a plant cell to suppress pattern-triggered immunity (PTI) or effector-triggered immunity (ETI).

Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex

  • Hwang, Eun Young;Jeong, Mi Suk;Park, So Young;Jang, Se Bok
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.488-493
    • /
    • 2014
  • Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED.

Design of Robot Rotation Arm with Parallel Motion in End Effector (말단 장치의 평면 유지가 가능한 로봇 회전 암의 설계)

  • Lee, Jong-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • This study proposes the design method for the robot rotation arm which the end effector that is connected in end of the arm keeps parallel motion even though the robot arm rotates. So far, most robot arm rotates together the end effector when the arm rotates. For this, this study proposes the mechanism that the arm is linked to each 4 parallel link so that rotation is possible by 4 pins, and the rotation arm connects 2 joints of diagonal line direction to a link in each 4 joint for rotation, and designs so that can change length of the link. For verification of design, this study targeted that develop the rotation arm for medical examination that use in ophthalmology. It is important that a medical robot offers comport to patient and design compactly so that medical examination and treatment space may can be defined enough. It is designed so that all drive elements may be positioned on interior of the arm and optimization of design for main parts was carried out in this study for this. The robot arm which is developed in this study manufactured to use by medical phoropter arm, and got good result by an experiment. The robot rotation arm which is proposed in this study is judged to contribute very effectively in case use of a medical robot arm for medical examination and treatment, also the robot arm which the end effector that is connected in the end of the arm needs to keep parallel motion. And, the robot arm which is developed in this study made an application as license.

Development of an End-Effector for Cucumber Robotic Harvester (오이 로봇 수확용 엔드이펙터 개발)

  • 민병로;문정환;이대원
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.63-67
    • /
    • 2003
  • Cucumber fruits requires a lot of labor to harvest in time in Korea, since the fruits are cut and grabbed by hand. In this study, we developed an end-effector for robotic harvester of cucumber fruits. Its development involved the integration of an end-effector system with a PC compatible, DC motors, and a motor controller board. Software, written in Pic-basic, combined the functions of motor control with various circumstances. Cucumber's properties were measured and analyzed for precision of the end-effector. The results were similar to those of other vegetables. Properties including hardness of cucumber fruits were used as basic data for development of a harvester.

Responses of Arabidopsis thaliana to Challenge by Pseudomonas syringae

  • Kim, Min Gab;Kim, Sun Young;Kim, Woe Yeon;Mackey, David;Lee, Sang Yeol
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.323-331
    • /
    • 2008
  • Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.

A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe (증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발)

  • Park, Ki-Tae;Kim, Seon-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • The general purposed control system for driving a motion of many different typed robot end-effector, which consists of a controller based on ARM Cotex M3-11017 MCU and an application software for generating a motion of end-effector, was developed. Experimental results show that a positioning error is nearly negligible and a repeatability error is 0.04%. Accordingly the developed control system can be applied practically to actuate a robot end-effector for inspection and maintenance of steam generator heat pipe in nuclear power plant.

NREH: Upper Extremity Rehabilitation Robot for Various Exercises and Data Collection at Home (NREH: 다양한 운동과 데이터 수집이 가능한 가정용 상지재활로봇)

  • Jun-Yong Song;Seong-Hoon Lee;Won-Kyung Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • In this paper, we introduce an upper extremity rehabilitation robot, NREH (NRC End-effector based Rehabilitation arm at Home). Through NREH, stroke survivors could continuously exercise their upper extremities at home. NREH allows a user to hold the handle of the end-effector of the robot arm. NREH is a end-effector-based robot that moves the arm on a two-dimensional plane, but the tilt angle can be adjusted to mimic a movement similar to that in a three-dimensional space. Depending on the tilting angle, it is possible to perform customized exercises that can adjust the difficulty for each user. The user can sit down facing the robot and perform exercises such as arm reaching. When the user sits 90 degrees sideways, the user can also exercise their arms on a plane parallel to the sagittal plane. NREH was designed to be as simple as possible considering its use at home. By applying error augmentation, the exercise effect can be increased, and assistance force or resistance force can be applied as needed. Using an encoder on two actuators and a force/torque sensor on the end-effector, NREH can continuously collect and analyze the user's movement data.

Motion and force control of robot manipulator (로보트 매니퓰레이터의 운동과 힘 제어)

  • 이남구;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.174-178
    • /
    • 1991
  • In this paper, we present a unified approach for the control of manipulator motions and active forces based on the operational space formulation. The end-effector dynamic model is used in the development of a control system in which the generalized operational space end-effector forces are selected as the command vector. A "generalized position and force specification matrix" is used for the specification of space of motions and forces in which manipulator is to be controlled. Flexibility in the force sensor, end-effector, and environment are discussed.discussed.

  • PDF

A Review of End-effector for Fruit and Vegetable Harvesting Robot (과채류 수확을 위한 로봇 엔드이펙터 리뷰)

  • Seol, Jaehwi;Lee, Sechang;Son, Hyoung Il
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2020
  • Fruit and vegetable harvesting robots have been widely studied and developed in recent years to reduce the cost of harvesting tasks such as labor and time. However, harvesting robots have many challenges due to the difficulty and uncertainty of task. In this paper, we characterize the crop environment related to the harvesting robot and analyzes state-of-the-art of the harvesting robot especially, in the viewpoint of robotic end-effector. The end-effector, an one of most important element of the harvesting robot, was classified into gripper and harvesting module, which were reviewed in more detail. Performance measures for the evaluation of harvesting robot such as test, detachment success, harvest success, and cycle time were also introduced. Furthermore, we discuss the current limitations of the harvesting robot and challenges and directions for future research.

A Study on the FEM Analysis and Gripping Force Control of End-Effector for the Wafer Handling Robot System (Wafer 반송용 End-Effector의 FEM 해석 및 파지력 제어에 관한 연구)

  • 권오진;최성주;이우영;이강원;박원규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.31-36
    • /
    • 2003
  • On this study, an E.E(End-Effector) for the 300 mm wafer transfer robot system is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor controlled by microchip. To design, relationship between the gripping force and the wafer deformation is analyzed by FEM. By analytic results, the gripping force for 300 mm wafer is confirmed as 255~274 gf. From experimental results on gripping force, repeatable position accuracy and gripping cycle times in a wafer cleaning system, we confirmed that the suggested E.E was well designed to satisfiy on the required performance for 300 mm wafer transfer robot system.

  • PDF