• Title/Summary/Keyword: Effectiveness of confinement

Search Result 46, Processing Time 0.023 seconds

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Analysis of Confinement Effectiveness for FRP Confined Concrete Columns (FRP로 구속된 콘크리트 압축부재의 구속효과 분석)

  • Choi, Eunsoo;Choi, Seung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.19-24
    • /
    • 2011
  • Concrete columns strengthening effect due to FRP (Fiber Reinforced Polymer) confinement depends on the elastic modulus of the FRP. This study analyzes the retrofitting effect of FRP confinements according to elastic modulus of FRPs using the existing data and suggests a practical model to assess the strengthening effect. This study subdivides the FRP elastic modulus into three parts based on normal concrete and steel elastic modulus. The slope and the y-axis intersection seem to increase with increasing FRP elastic modulus. In addition, the strengthening effect does not develop up to some amount of FRP confinement having relatively smaller elastic modulus than the compressive elastic modulus of concrete. In this case, a linear model to assess the strengthening effect is hard to be used. Thus, this study suggests that the FRP jackets having 2 times larger elastic modulus than that of concrete are recommended to be used for retrofit of concrete and that a linear model can be applied for the case. The suggested model shows nearly the same result regardless to the restraint of the y-axis intersection. This has been observed at the model of steel confinement and, thus, is a reliable result.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

FRP Confinement of Heat-Damaged Circular RC Columns

  • Al-Nimry, Hanan Suliman;Ghanem, Aseel Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.115-133
    • /
    • 2017
  • To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.

Effect of soil-structure interaction on seismic damage of mid-rise reinforced concrete structures retrofitted by FRP composites

  • Van Cao, Vui
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • The current study explores the soil-structure interaction (SSI) effect on the potential seismic damage of mid-rise non-seismically designed reinforced concrete frames retrofitted by Fibre Reinforced Polymer (FRP). An 8-storey reinforced concrete frame poorly-confined due to transverse reinforcement deficiency is selected and then retrofitted by FRP wraps to provide external confinement. The poorly-confined and FRP retrofitted frames with/without SSI are modelled using hysteretic nonlinear elements. Inelastic time history and damage analyses are performed for these frames subjected to different seismic intensities. The results show that the FRP confinement significantly reduces one or two damage levels for the poorly-confined frame. More importantly, the SSI effect is found to increase the potential seismic damage of the retrofitted frame, reducing the effectiveness of FRP retrofitting. This finding, which is contrary to the conventionally beneficial concept of SSI governing for decades in structural and earthquake engineering, is worth taking into account in designing and evaluating retrofitted structures.

Characteristics of Stress-strain Relationship of Concrete Confined by Lateral Reinforcement (횡철근에 의해 횡구속된 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.67-80
    • /
    • 2009
  • The basic concept of seismic design is to attain the ductility required in a design earthquake. This ductility can be obtained by providing sufficient lateral confinements to the plastic hinge regions of columns. The most cost-effective design might be derived by determining the proper amount of lateral confinement using a stress-strain relationship for confined concrete. Korean bridge design code requires the same amount of lateral confinement regardless of target ductility, but Japanese design code provides the stress-strain relationship of the confined concrete to determine the amount of lateral confinement accordingly. While design based on material characteristics tends to make the design process more involved, it makes it possible to achieve cost-effectiveness, which is also compatible with the concept of performance-based design. In this study, specimens with different numbers of lateral confinements have been tested to investigate the characteristics of the stress-strain relationship. Test results were evaluated, using several empirical equations to quantify the effects.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Tokamak plasma disruption precursor onset time study based on semi-supervised anomaly detection

  • X.K. Ai;W. Zheng;M. Zhang;D.L. Chen;C.S. Shen;B.H. Guo;B.J. Xiao;Y. Zhong;N.C. Wang;Z.J. Yang;Z.P. Chen;Z.Y. Chen;Y.H. Ding;Y. Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1501-1512
    • /
    • 2024
  • Plasma disruption in tokamak experiments is a challenging issue that causes damage to the device. Reliable prediction methods are needed, but the lack of full understanding of plasma disruption limits the effectiveness of physics-driven methods. Data-driven methods based on supervised learning are commonly used, and they rely on labelled training data. However, manual labelling of disruption precursors is a time-consuming and challenging task, as some precursors are difficult to accurately identify. The mainstream labelling methods assume that the precursor onset occurs at a fixed time before disruption, which leads to mislabeled samples and suboptimal prediction performance. In this paper, we present disruption prediction methods based on anomaly detection to address these issues, demonstrating good prediction performance on J-TEXT and EAST. By evaluating precursor onset times using different anomaly detection algorithms, it is found that labelling methods can be improved since the onset times of different shots are not necessarily the same. The study optimizes precursor labelling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors. The results on J-TEXT and EAST show that the models trained on the optimized labels outperform those trained on fixed onset time labels.

Estimation of Confinement Effectiveness Factor for Confining Stress by Spiral (나선근에 의한 횡보강 응력 계산을 위한 횡보강 유효 계수의 산정법)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.280-285
    • /
    • 1995
  • In order to predict the behavior of column confined with spirals, the accurate estimation of confining stress by spiral is very important, Thus a number of models have been proposed for calculating the confining stress by spiral. However, in these equations, it was not considered the effects of the difference of mechanical characteristics related to the application of high strength concrete and spiral in structures. In this study, a model equation for calculation of the confining stress by spiral was proposed based on the test results investigated here. The proposed equation included the effects of concrete strength, spacing and yield strength of spirals

  • PDF