Browse > Article
http://dx.doi.org/10.1007/s40069-016-0181-4

FRP Confinement of Heat-Damaged Circular RC Columns  

Al-Nimry, Hanan Suliman (Department of Civil Engineering, Jordan University of Science and Technology)
Ghanem, Aseel Mohammad (Department of Civil Engineering, Jordan University of Science and Technology)
Publication Information
International Journal of Concrete Structures and Materials / v.11, no.1, 2017 , pp. 115-133 More about this Journal
Abstract
To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.
Keywords
RC columns; heat-damaged columns; repair; fiber reinforced polymers; confinement; CFRP; GFRP; axial strength; ductility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 El-Shaer, M. (2014). Structural analysis for concrete columns subjected to temperature. Acta Technica Corviniensis-Bulletin of Engineering. Tome VII, Fascicule 2 (April-June) ISSN: 2067-3809.
2 Fahmy, M.,&Wu, Z. (2010). Evaluating and proposing models of circular concrete columns confined with different FRP composites. Composites Part B Engineering, 41(3), 199-213.
3 Fib. (2001). Externally bonded FRP reinforcement for RC structures. Bulletin No. 14, Technical Report, Federation internationale du Beton, Lausanne, Switzerland.
4 Georgali, B., & Tsakiridis, P. E. (2005). Microstructure of firedamaged concrete. A case study. Cement & Concrete Composites, 27(2), 255-259.   DOI
5 Hager, I. (2014). Colour change in heated concrete. Fire Technology, 50(4), 945-958.   DOI
6 Harajli, M. H. (2006). Axial stress-strain relationship for FRP confined circular and rectangular concrete columns. Cement & Concrete Composites, 28(10), 938-948.   DOI
7 Harries, K. A., & Kharel, G. (2002). Behavior and modeling of concrete subject to variable confining pressure. ACI Materials Journal, 99(2), 180-189.
8 Hertz, K. D. (2003). Limits of spalling of fire-exposed concrete. Fire Safety Journal, 38(2), 103-116.   DOI
9 Husem, M. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Safety Journal, 41(2), 155-163.   DOI
10 Jau, W. C., & Huang, K. L. (2008). A study of reinforced concrete corner columns after fire. Cement & Concrete Composites, 30(7), 622-638.   DOI
11 Jiang, T., & Teng, J. G. (2007). Analysis-oriented stress-strain models for FRP-confined concrete. Engineering Structures, 29(11), 2968-2986.   DOI
12 Zhang, B., Bicanic, N., Pearce, C. J., & Balabanic, G. (2000). Assessment of toughness of concrete subject to elevated temperatures from a complete load-displacement curve-Part 2: Experimental investigations. ACI Materials Journal, 97(5), 556-566.
13 Yaqub, M., & Bailey, C. G. (2012). Seismic performance of shear critical post-heated reinforced concrete square columns wrapped with FRP composites. Construction and Building Materials, 34, 457-469.   DOI
14 Yaqub, M., Bailey, C. G., & Nedwell, P. (2011). Axial capacity of post-heated square columns wrapped with FRP composites. Cement & Concrete Composites, 33(6), 694-701.   DOI
15 Yaqub, M., Bailey, C. G., Nedwell, P., Khan, Q. U. Z., & Javed, I. (2013). Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets. Composites Part B Engineering, 44(1), 200-211.   DOI
16 Yaqub, M., & Ghani, U. (2013). Assessment of residual strength based on estimated temperature of post-heated RC columns. Mehran University Research Journal of Engineering and Technology, 32(1), 55-70.
17 Youssef, M. N., Feng, M. Q., & Mosallam, A. S. (2007). Stressstrain model for concrete confined by FRP composites. Composites Part B Engineering, 38(5-6), 614-628.   DOI
18 Lee, C., & Hegemier, G. (2009). Model of FRP-confined concrete cylinders in axial compression. ASCE Journal of Composites for Construction, 13(5), 442-454.   DOI
19 Lam, L., & Teng, J. G. (2003). Design-oriented stress-strain model for FRP-confined concrete. Construction and Building Materials, 17(6-7), 471-489.   DOI
20 Lam, L., & Teng, J. G. (2004). Ultimate condition of fiber reinforced polymer-confined concrete. ASCE Journal of Composites for Construction, 8(6), 539-548.   DOI
21 Liang, M., Wu, Z. M., Ueda, T., Zheng, J. J., & Akogbe, R. (2012). Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes. Journal of Reinforced Plastics and Composites, 31(6), 389-403.   DOI
22 Lim, J. C., & Ozbakkaloglu, T. (2014a). Confinement model for FRP-confined high-strength concrete. ASCE Journal of Composites for Construction, 18(4), 1-19.
23 Lim, J. C., & Ozbakkaloglu, T. (2014b). Design model for FRPconfined normal and high-strength concrete square and rectangular columns. Magazine of Concrete Research, 66(20), 1020-1035.   DOI
24 Lim, J. C., & Ozbakkaloglu, T. (2015a). Unified stress-strain model for FRP and actively confined normal-strength and high-strength concrete. ASCE Journal of Composites for Construction, 19(4), 04014072-1-04014072-14.   DOI
25 Lim, J. C., & Ozbakkaloglu, T. (2015b). Hoop strains in FRPconfined concrete columns: Experimental observations. Materials and Structures, 48(9), 2839-2854.   DOI
26 Lin, C. H., Chen, S. T., & Yang, C. A. (1995). Repair of firedamaged reinforced concrete columns. ACI Structural Journal, 92(4), 406-411.
27 Lin, G., Yu, T., & Teng, J. (2016). Design-oriented stress-strain model for concrete under combined FRP-steel confinement. ASCE Journal of Composites for Construction, 20(4), 04015084-1-04015084-11.   DOI
28 Luo, X., Sun, W., & Chan, S. (2000). Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete. Cement and Concrete Research, 30(3), 379-383.   DOI
29 ACI 211.1-91. (1991). Standard practice for selecting proportions for normal, heavyweight and mass concrete (reapproved 2009). Farmington Hills, MI: American Concrete Institute.
30 ACI 318-14. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. Farmington Hills, MI: American Concrete Institute.
31 Nassif, A. Y., Burley, E., & Rigden, S. (1995). A new quantitative method of assessing fire damage to concrete structures. Magazine of Concrete Research, 47(172), 271-278.   DOI
32 Netinger, I., Kesegic, I., & Guljas, I. (2011). The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates. Fire Safety Journal, 46(7), 425-430.   DOI
33 Neves, I., Rodrigues, J., & Loureiro, A. (1996). Mechanical properties of reinforcing and prestressing steels after heating. Journal of Materials in Civil Engineering, 8(4), 189-194.   DOI
34 Ozbakkaloglu, T., & Lim, J. C. (2013). Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Composites Part B Engineering, 55, 607-634.   DOI
35 Ozbakkaloglu, T., Lim, J. C., & Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Engineering Structures, 49, 1068-1088.   DOI
36 Pellegrino, C., & Modena, C. (2010). Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. ASCE Journal of Composites for Construction, 14(6), 693-705.   DOI
37 Pham, T. M., & Hadi, M. N. S. (2014). Confinement model for FRP confined normal- and high-strength concrete circular columns. Construction and Building Materials, 69, 83-90.   DOI
38 Ramirez, J. L., Barcena, J. M., Urreta, J. I., & Sanchez, J. A. (1997). Efficiency of short steel jackets for strengthening square section concrete columns. Construction and Building Materials, 11(5-6), 345-352.   DOI
39 ACI 440.2R. (2008). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Farmington Hills, MI: American Concrete Institute.
40 Al Abadi, H., Abo El-Naga, H., Shaia, H., & Paton-Cole, V. (2016). Refined approach for modelling strength enhancement of FRP-confined concrete. Construction and Building Materials, 119(30), 152-174.   DOI
41 Arioz, O. (2009). Retained properties of concrete exposed to high temperatures: Size effect. Fire and Materials, 33(5), 211-222.   DOI
42 Al-Kamaki, Y., Al-Mahaidi, R., & Bennets, I. D. (2015). Experimental and numerical study of the behaviour of heatdamaged RC circular columns confined with CFRP fabric. Composite Structures, 133, 679-690.   DOI
43 Al-Nimry, H., Haddad, R., Afram, S., & Abdel-Halim, M. (2013). Effectiveness of advanced composites in repairing heat-damaged RC columns. Materials and Structures, 46(11), 1843-1860.   DOI
44 Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516-522.   DOI
45 Bailey, C., & Yaqub, M. (2012). Seismic strengthening of shear critical post-heated circular concrete columns wrapped with FRP composite jackets. Composite Structures, 94(3), 851-864.   DOI
46 Benzaid, R., Mesbah, H., & Chikh, N. (2010). FRP-confined concrete cylinders: Axial compression experiments and strength model. Journal of Reinforced Plastics and Composites, 29(16), 2469-2488.   DOI
47 Bisby, L. A., Chen, J. F., Li, S. Q., Stratford, T. J., Cueva, N., & Crossling, K. (2011). Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. Engineering Structures, 33(12), 3381-3391.   DOI
48 Roy, A., Sharma, U., & Bhargava, P. (2016). Confinement strengthening of heat-damaged reinforced concrete columns. Magazine of Concrete Research, 68(6), 291-304.   DOI
49 Rocca, S., Galati, N., & Nanni, A. (2008). Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross sections. ASCE Journal of Composites for Construction, 12(1), 80-92.   DOI
50 Roy, A., Sharma, U., & Bhargava, P. (2014). Strengthening of heat damaged reinforced concrete short columns. Journal of Structural Fire Engineering, 5(4), 381-398.   DOI
51 Saenz, N., & Pantelides, C. (2007). Strain-based confinement model for FRP confined concrete. Journal of Structural Engineering, 133(6), 825-833.   DOI
52 Shahawy, M., Mirmiran, A., & Beitelman, T. (2000). Tests and modeling of carbon-wrapped concrete columns. Composites Part B Engineering, 31, 471-480.   DOI
53 Tahir, M. F., Yaqub, M., Bukhari, I., Tufail, R. F., & Tahir, A. (2013). Effect of carbon fiber reinforced polymer confinement on the fire damaged and un-heated reinforced concrete square columns. Life Science Journal, 10(12s), 791-799.
54 Teng, J. G., & Lam, L. (2004). Behavior and modeling of fiberreinforced polymer-confined concrete. Journal of Structural Engineering, 130(11), 1713-1723.   DOI
55 Bisby, L. A., Dent, A. J. S., & Green, M. F. (2005). Comparison of confinement models for fiber-reinforced polymer-wrapped concrete. ACI Structural Journal, 102(1), 62-72.
56 Campione, G. (2012). Load carrying capacity of RC compressed columns strengthened with steel angles and strips. Engineering Structures, 40, 457-465.   DOI
57 CAN, CSA-S806-12. (2012). Design and construction of building structures with fibre-reinforced polymers. Mississauga, ON: Canadian Standards Association.
58 Teng, J. G., Huang, Y. L., Lam, L., & Ye, L. (2007). Theoretical model for fiber reinforced polymer-confined concrete. ASCE Journal of Composites for Construction, 11(2), 201-210.   DOI
59 Teng, J. G., Jiang, T., Lam, L., & Luo, Y. Z. (2009). Refinement of a design-oriented stress-strain model for FRP-confined concrete. ASCE Journal of Composites for Construction, 13(4), 269-278.   DOI
60 Carey, S. A., & Harries, K. A. (2005). Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber reinforced polymer jackets. ACI Structural Journal, 102(4), 596-604.
61 Chaallal, O., Hassan, M., & LeBlanc, M. (2006). Circular columns confined with FRP: Experimental versus predictions of models and guidelines. ASCE Journal of Composites for Construction, 10(1), 4-12.   DOI
62 Chan, Y., Peng, G., & Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement & Concrete Composites, 21(1), 23-27.   DOI
63 Chastre, C., & Silva, M. (2010). Monotonic axial behavior and modelling of RC circular columns confined with CFRP. Engineering Structures, 32(8), 2268-2277.   DOI
64 Chen, Y. H., Chang, Y. F., Yao, G. C., & Sheu, M. S. (2009). Experimental research on post-fire behaviour of reinforced concrete columns. Fire Safety Journal, 44(5), 741-748.   DOI
65 Dai, J., Bai, Y., & Teng, J. (2011). Behavior and modeling of concrete confined with FRP composites of large deformability. ASCE Journal of Composites for Construction, 15(6), 963-973.   DOI
66 Tolentino, E., Lameiras, F. S., Gomes, A. M., Rigo da Silva, C. A., & Vasconcelos, W. L. (2002). Effects of high temperature on the residual performance of Portland cement concretes. Materials Research, 5(3), 301-307.   DOI
67 TR 55. (2012). Design guidance for strengthening concrete structures using fibre composite materials (3rd ed.) Technical Report No. 55, Concrete Society, Crowthorne, UK.
68 Wei, Y. Y., & Wu, Y. F. (2012). Unified stress-strain model of concrete for FRP-confined columns. Construction and Building Materials, 26(1), 381-392.   DOI
69 CNR. (2013). CNR-DT 200 R1/2013: Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Rome: Italian Research Council CNR Advisory Committee on Technical Recommendations for Construction.
70 Cui,C.,&Sheikh, S. (2010). Analyticalmodel for circular normaland high-strength concrete columns confined withFRP. ASCE Journal of Composites for Construction, 14(5), 562-572.   DOI
71 De Lorenzis, L., & Tepfers, R. (2003). Comparative study of models on confinement of concrete cylinders with fiberreinforced polymer composites. ASCE Journal of Composites for Construction, 7(3), 219-237.   DOI
72 Xiong, G. J., Wu, X. Y., Li, F. F., & Yan, Z. (2011). Load carrying capacity and ductility of circular concrete columns confined by ferrocement including steel bars. Construction and Building Materials, 25(5), 2263-2268.   DOI
73 Wu, Y. F., & Jiang, J. F. (2013). Effective strain of FRP for confined circular concrete columns. Composite Structures, 95, 479-491.   DOI
74 Wu, Y. F., & Wang, L. M. (2009). Unified strength model for square and circular concrete columns confined by external jacket. ASCE Journal of Structural Engineering, 135(3), 253-261.   DOI
75 Xiao, Y., & Wu, H. (2000). Compressive behavior of concrete confined by carbon fiber composite jackets. ASCE Journal of Materials in Civil Engineering, 12(2), 139-146.   DOI
76 Yaqub, M., & Bailey, C. G. (2011a). Repair of fire damaged circular reinforced concrete columns with FRP composites. Construction and Building Materials, 25(1), 359-370.   DOI
77 Yaqub, M., & Bailey, C. G. (2011b). Cross sectional shape effects on the performance of post-heated reinforced concrete columns wrapped with FRP composites. Composite Structures, 93(3), 1103-1117.   DOI