• Title/Summary/Keyword: Effectiveness of confinement

Search Result 46, Processing Time 0.026 seconds

Confinement Effectiveness on Compressive Zone of RC Walls (철근콘크리트 벽체 압축단부의 구속효과)

  • 김장훈;안상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.459-464
    • /
    • 2001
  • A great level of strength and deformability on compressive zone of RC wall is essentially required when subjected to high axial and in-plane lateral loading due to earthquakes. One of the best ways to handle this situation is to provide the confinement effectiveness to the compressive zone by reinforcing steel. For this a series of design charts were constructed to evaluate the confinement effectiveness for a given steel configuration in accordance with a well-known model and part of them are presented in this paper. Using the chart, designers can choose a desirable steel arrangement in flexural compressive zone of RC walls for a prescribed confinement factor.

  • PDF

The Lateral Confinment Effects of Spiral Reinforcement of High Strength Concrete Columns. (고강도 콘크리트 부재의 횡보강 효과에 관한 연구)

  • 신성우;권영호;이광수;오정근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.63-67
    • /
    • 1989
  • Various studies have been done to investigate the effectiveness of lateral confinement of lower strength concrete(below 420kg/$\textrm{cm}^2$). But little research its effectiveness for high strength concrete. A certain concern has been arised that the beneficial effect of lateral confinement in high strength concrete may be different from that in lower strength. This study aimed to investigate that concern with different confinement spacing(D/2 : D/4). The results show that beneficial effects of spiral confinement are more pronounced for lower strength concrete as compared to higher strength concrete.

  • PDF

Nonlinear Analysis considered Confinement Effect of Precast Concrete Segment (프리캐스트 콘크리트 세그먼트의 구속효과를 고려한 비선형 해석)

  • Lee, Heon-Min;Kim, Tae-Hoon;Park, Jae-Keun;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.305-308
    • /
    • 2008
  • The purpose of this study is to propose the confinement effectiveness of precast segmental concrete that binding by lateral confining steel in the method of precast segmental concrete pridge piers construction. Generally, the confinement effect of concrete that binding by lateral confining steel is defined by the confinement effectiveness coefficient and the confinement effectiveness coefficient is defined as the ratio of area of effectively confined concrete core to area of confined concrete core. The area of effectively confined concrete core is defined by Arching action occurred on a space of lateral confinement steel and The area of confined concrete core is defined by the ratio of area of longitudinal reinforcement to area of core of section. But in case of precast segmental concrete, concrete cover that exist on top and bottom of concrete segment should be considered.

  • PDF

Deformability and Confinement of Structural Wall with Boundary Element (단부횡보강된 구조벽의 변형능력 및 보강방법)

  • 강수민;박홍근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.349-361
    • /
    • 2003
  • For performance-base design using nonlinear static analysis, it is required to predict the inelastic behavior of structural members accurately. In the present study, nonlinear numerical analysis was performed to develop the method describing the moment-curvature relationship of structural wall with boundary confinement. Through the numerical analysis, variations of behavioral characteristics and failure mechanism with the arrangement of vertical reiforcement and the length of boundary confinement were studied. Based on the findings, moment-curvature curves and curvature capacity for walls with a variety of re-bar arrangement was developed. By equalizing curvature capacity to demand, a design method which can determine the length of boundary confinement, was developed and for the effectiveness of boundary confinement and constructability, boundary confinement detail was proposed.

  • PDF

Confinement Effects of Concrete by GFRP Shells (GFRP Laminates에 의한 콘크리트의 구속)

  • 조순호;선성규;정창원;조규성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.937-942
    • /
    • 2003
  • Three series of 36 short circular columns confined by wraps, full shells and partial shells were tested by varying the thickness of GFRP laminates. An assessment of the effectiveness of the existing models on confinement of concrete columns with FRP was made for present tests. Test results indicated significant increases in strength and deformability compared with those in unconfined concrete, particularly warp and full shell confinement. Existing predictive equations for peak strength and strain of confined concrete showed a large scatter and varied considerably, resulting from the realistic fracture strains of FRP nor considered.

  • PDF

Confinement Effects of High-Strength Reinforced Concrete Tied Columns

  • Han, Byum-Seok;Shin, Sung-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.133-142
    • /
    • 2006
  • An experimental study was conducted to investigate the effectiveness of transverse steel in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns($260{\times}260{\times}1,200mm$) were tested. Effects of such main variables as concrete compressive strength, configurations of transverse steel, transverse reinforcement ratio, spacing of transverse steel, and spalling of concrete cover were investigated. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse steel that can provide sufficiently high lateral confinement pressure. A consistent decrease in the deformability of the column test specimens was observed with increasing concrete strength. Test results of this study were compared with existing confinement models of modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi. The comparison indicates many existing models to predict the behavior of confined concrete overestimate or underestimate the ductility of confined concrete.

Compressive Strength Enhancement of Concrete Cylinders Confined with FRP Wrapping (FRP로 횡보강된 콘크리트 공시체의 압축강도 향상에 관한 연구)

  • 김영섭;정영수;박창규;송희원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.351-354
    • /
    • 2003
  • Triaxial behavior of concrete cylinders wrapped with FRP material has been investigated for the increase of concrete strength by lateral confinement. Using the model by Richart et al., a modified empirical equation was proposed to estimate the strength of concrete cylinders with FRP confinement based on the linear relationship between the concrete strength and lateral confining pressure. From the experimental stress-strain result of the cylinder specimens having similar confining pressure, less ductility was observed for higher strength concrete. But the compressive strength of the specimen was linearly increased by lateral confinement. The confinement effectiveness coefficient for the strength enhancement of the cylinders by FRP wrap was obtained as 2.27 from the regression analysis.

  • PDF

Confinement of Columns using Headed Bars (Headed Bars를 활용한 기둥의 구속효과에 대한 연구)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

Behavior of Square Concrete Columns Confined by FRP Composites (FRP 합성재료에 의하여 구속된 정사각형 콘크리트 기둥의 거동)

  • Cho, Soon-Ho;Bang, Se-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • Three series of 36 short square columns confined by wraps, full shells and partial shells were tested by varying the thickness of GFRP laminates. An assessment of the effectiveness of the existing model on confinement of concrete columns with FRP was made. Test results indicated moderate increases in strength, but significantly enhanced deformability compared with those in unconfined concrete, particularly the warp and full shell confinement.

  • PDF

Confinement Effects of Reinforced Concrete Tied Columns (철근콘크리트 띠철근 기둥의 구속효과)

  • 왕성근;한범석;이희수;신성우;반병열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF