• 제목/요약/키워드: Effective thermal conductivity

검색결과 305건 처리시간 0.022초

지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Ground Heat Exchanger to the Overall Thermal Conductivity)

  • 공형진;임효재;최재호;손병후
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.45-51
    • /
    • 2009
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

지중 열교환기 보어홀에서의 유효 열전도도 및 열저항 산정 (Evaluation of Effective Thermal Conductivity and Thermal Resistance in Ground Heat Exchanger Boreholes)

  • 손병후;신현준;박성구
    • 설비공학논문집
    • /
    • 제17권8호
    • /
    • pp.695-703
    • /
    • 2005
  • The objective of this study is to determine the effective thermal conductivity and thermal resistance values in test boreholes with three different fill materials. To evaluate these heat transfer properties, in-situ tests on four vertical boreholes were conducted by adding a monitored amount of heat to water over various test lengths. Two parameter estimation models, line-source and numerical one-dimensional models, for evaluation of thermal response test data were compared when applied on the same four data sets. Results show that the average thermal conductivity deviation between measured data and these two models is in the range of $3.03\%$ to $4.45\%$. The effect of increasing grout thermal conductivity from 1.34 to 1.82 $W/m^{\circ}C$ resulted in overall increases in effective formation thermal conductivity by $11.1\%$ to $51.9\%$ and reductions in borehole thermal resistance by $11.6\%$ to $26.1\%$.

나노유체 입자상 모양의 유효 열전도도에의 영향 (The effects of particle shape on the effective thermal conductivity enhancement of nanofluids)

  • 구준모;강용태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2106-2109
    • /
    • 2008
  • Nanofluids have been studied as possible alternatives for heat transfer fluids to improve the efficiency of heat exchangers. There are deviations of measured effective thermal conductivities between research-groups, and the mechanisms of the effective thermal conductivity enhancement of nanofluids are not confirmed yet. In this study, the effects of particle shape on the effective thermal conductivity enhancement are discussed and presented as a possible explanation of the deviations. The particle motion effect is found to be negligible for nanofluids of high aspect ratio cylindrical particles, which is believed to be important for nanofluids of spherical particles, while the percolation network formation and contact resistance play dominant roles in determining the effective thermal conductivity.

  • PDF

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed

  • Wang, Shuang;Wang, Shuai;Wu, Bowen;Lu, Yuelin;Zhang, Kefan;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2174-2183
    • /
    • 2021
  • Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.

탄소 나노튜브 나노유체의 열전도도에 대한 연구 (A Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids)

  • 김봉훈
    • 설비공학논문집
    • /
    • 제19권3호
    • /
    • pp.275-283
    • /
    • 2007
  • An experimental study was conducted to investigate the effect of the morphology of CNT (Carbon Nanotube) on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using a steady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature. Although functionalized SWNT (Single-Walled Carbon Nanotube) produced more stable and homogeneous suspensions, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0% by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT (Multi-Walled Carbon Nanotube), the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

탄소 나노튜브 나노유체의 열전도도에 대한 연구 (Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids)

  • 김봉훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.168-175
    • /
    • 2006
  • An experimental study was conducted to investigate the effect of the morphology of CNT on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using asteady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature, Although functionalized SWNT produiced a more stable and homogeneous suspension, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0 percent by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT, the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

  • PDF

금속스크랩이 혼합된 상변화물질의 유효열전도율 (Effective thermal conductivity of the phase change material with metal scrap)

  • 김시범;노승탁
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.923-928
    • /
    • 1986
  • 본 논문에서는 열전도율이 큰 금속의 스크랩과 파라핀을 혼합한 축열 매질에 있어서 스크랩의 체적 혼합율에 따르는 열전도율의 변화를 모델링과 실험으로 구해서 축열 계산에 필요한 열전도율 자료를 제시하고자 한다.

다공성 단열재를 포함한 열방어구조의 열 특성 분석 (Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation)

  • 황경민;김용하;이정진;박정선
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.26-34
    • /
    • 2016
  • 본 논문에서는 다공성 단열재의 정확도가 높은 유효 열전도율 예측 모델을 새롭게 제안하고, 기존 예측 모델 및 시험 결과와 비교 검증하였다. 이를 위해 기존 유효 예측 모델들을 다공성 단열재의 고체 부피율에 따른 열전도율 시험 결과 값과 비교하였다. 그리고 고체의 부피율에 따른 유효 열전도율 시험결과와 비교하여 가장 높은 정확도를 가진 Zehner-Schlunder 모델 및 시험 결과 데이터를 기반으로 고체-유체의 부피율과 열전도율 비로 구성된 다항식을 추가하여, 새로운 유효 열전도율 예측 모델을 정의하였다. 예측 모델을 시험 결과와 비교하여 검증하였다. 또한 예측 모델을 적용하여 열방어구조의 과도 열전달 해석을 수행하였으며, 열전달 시험 결과와의 비교를 통해 유효 열전도율 예측 모델의 유효성을 확인하였다.

금속박판 접합용 고분자화합물시트를 이용한 박형 히트파이프 내압성 및 유효열전도율 평가에 관한 연구 (A Study on the Evaluation of Pressure Resistance and Effective Thermal Conductivity of Thin Heat Pipes Using Polymer Compound Sheets for Bonding Metal Thin Plates)

  • 유병석;김정훈;김동규
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, a pressure vessel for a heat pipe was fabricated by bonding a metal thin film using a polymer compound sheet. In order to confirm the applicability of the experimentally manufactured copper material thin heat pipe of 0.6 mm or less, the pressure resistance and effective thermal conductivity for pressure generated according to the type of the working fluid of the heat pipe were evaluated to suggest the commercialization potential of the thin heat pipe. As a result of evaluating the pressure resistance and effective thermal conductivity performance of the thin heat pipe, the following conclusions were drawn. 1) Using a PEEK-based polymer compound sheet, it was possible to fabricate a pressure vessel for a thin heat pipe with a pressure resistance of up to 1.0 MPa by bonding a copper thin film, and the possibility of commercialization was confirmed at a temperature below 120 ℃. 2) In the case of the effective thermal conductivity performance evaluation test, the effective thermal conductivity of ethanol was higher than that of FC72 and Novec7000, and in the case of ethanol, the maximum effective thermal conductivity was 2,851 W/mK at 3.0 W of heating.

지중열교환기 성능 향상에 관한 연구 (A Study on Improving the Efficiency of Ground Heat Exchanger)

  • 김욱중;이공훈;김민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3142-3147
    • /
    • 2008
  • A simple transient simulation of ground source heat pump system was carried out to investigate the effects of ground thermal conductivity on its performance. The TRNSYS code with a simple water to water heat pump model was used to compare the COP variation of the system. A new ground heat exchanger called by semi-closed loop was proposed and constructed in the real site. The effective thermal conductivity was measured using the test equipment developed by according to the line source model. The simulation results showed that highly efficient thermal conductivity of the grout material could increase the performance of the heat pump system very well. And the new ground heat exchanger showed the increased effective thermal conductivity as the penetration water flow rate(PWFR) was increased. Therefore, the performance improvement of the heat pump system using the proposed ground heat exchanger can be expected.

  • PDF