• 제목/요약/키워드: Effective stress analysis

검색결과 1,464건 처리시간 0.027초

일본 한신 대지진에 있어서의 포트 아일랜드의 지진응답해석 (Earthquake Response Analysis at Port Island during the 1995 Hyogoken-nanbu Earthquake(Japan))

  • 황성춘
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.477-484
    • /
    • 2000
  • Earthquake response analyses are conducted for the investigation of the ground shaking during the 1995 Hyogoken-nambu earthquake. Port Island a man made island with about 8{{{{ KAPPA m^2 }} area is chosen for this purpose Because earthquake measurement with vertical array was conducted there. Strain dependent characteristics of soil can be modeled well into Hardin-Drnevich Model. Four analyses are conducted : total stress analysis by equivalent linear method non-linear method. and two effective stress analyses. All analyses except equivalent linear analysis show fairy good agreement with observed record mainly because the non-linear behavior of Holocene clay layer has predominant effect on the behavior of fill, However detailed investigation show that effective stress analyses give much better prediction than total stress analyses.

  • PDF

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

규격별 비부착 긴장재의 극한응력식에 대한 비교 연구 (A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes)

  • 유성원;서정인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

Sand Drain에 의한 점성토의 압밀 특성 (A Study on Consolidation Characteristics in Marine Clay by Sand Drain)

  • 전용백;곽수정
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.83-89
    • /
    • 2004
  • The analysis about consolidation characteristic in soft clay has been depending one-dimension consolidation analysis. but, drain and undrain zone are explicated as homogeneous by consolidation behavior following consoli- dated settlementsoft in soft clay. 1) Established sand drain in soft clay in many types, and measured water content, unconfined compression strength, vertical stress, horizontal stress, vertical settlement, pore water pressure. 2) Arranged the result from the test and numerically explicated effective stress, total stress, and effective stress path at the drain and undrain zone. 3) We also analyzed and comparied elastic and elastic-plastic in soft clay using measured data. The result analyzed does not approach to a special theory, but, it is well in accord with the result of other investigator's study in the same condition.

  • PDF

UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가 (Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model)

  • 김정회;진현식
    • 지질공학
    • /
    • 제33권1호
    • /
    • pp.151-167
    • /
    • 2023
  • 본 연구는 LNG저장탱크가 설치될 느슨한 포화사질지반을 대상으로 개정된 액상화 평가법과 UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가법을 비교한 것이다. 이를 위해 여러가지 실내 및 현장시험을 실시하여 필요한 Parameter를 산정하였다. 검토결과, 지진응답해석결과와 SPT N 값을 이용하는 개정 액상화 평가법은 액상화 발생 가능성을 높게 평가하였지만, 다양한 액상화 저항인자를 고려할 수 있는 유효응력해석법은 액상화에 다소 안정한 것으로 분석되었다. UBC3D-PLM 모델을 이용한 1차원 유한요소해석을 할 경우 보다 간편하게 액상화 안정성 검토가 가능하였고, 액상화 보강 영역을 최소화 할 수 있었다. 또한, LNG저장탱크의 기초를 고려한 2·3차원 수치해석 시에는 액상화 발생 시 내진설계 및 거동특성을 규명하는 것에 활용될 수 있을 것으로 기대된다.

유한요소법을 이용한 임플란트 고정체의 삼각배열에 따른 지지골의 응력 분석 (Finite element stress analysis on supporting bone by tripodal placement of implant fixture)

  • 손성식;이명곤
    • 대한치과기공학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2009
  • Purpose: This study was to propose the clear understanding for stress distribution of supporting bone by use of staggered buccal offset tripodal placement of fixtures of posterior 3 crown implant partial dentures. We realized posterior 3 crown implant fixed partial dentures through finite element modeling and analysed stress effect of implant arrangement location to supporting bone under external load using finite element method. Method: To understand stress distribution of 3 crown implant fixed partial dentures which have 2 different arrangement by finite element analysis. In each model, for loading condition, we applied $45^{\circ}$ oblique load to occlusal surface of crown and applied 100 N for 3 crown individually(total 300 N) for imitating possible oral loading condition. at this time, we calculated Von Mises stress distribution in supporting bone through finite element method. Result: When apply $45^{\circ}$ oblique load to in-line arrangement model, maximum stress result for 100 N for each 3 crown 47.566MPa. In tripodal placement, result for 1mm buccal offset tripodal placement implant model was maximum distributed load 51.418MPa, so result was higher than in-line arrangement model. Conclusion: In stress distribution result by placement of implant fixture, the most effective structure was in-line arrangement. The tripodal placement does not effective for stress distribution, gap cause more damage to supporting bone.

  • PDF

ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석 (Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis)

  • 곽시영;남정호
    • 한국주조공학회지
    • /
    • 제40권1호
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

유효응력해석과 등가선형해석을 이용한 매립지반의 액상화 평가 (Liquefaction Evaluation of Reclaimed Sites using an Effective Stress Analysis and an Equivalent Linear Analysis)

  • 박성식
    • 대한토목학회논문집
    • /
    • 제28권2C호
    • /
    • pp.83-94
    • /
    • 2008
  • 본 연구에서는 흙의 미소변형에서 대변형까지 고려할 수 있는 유효응력해석을 이용하여 매립지반에 대한 액상화 및 진동으로 발생하는 침하량을 예측하였다. 유효응력모델은 진동 중에 발생하는 과잉간극수압을 계산하여 이에 따른 흙의 강성저하와 수반되는 지반의 변위를 모델링하였다. 진동으로 인한 지반의 변형률 수준이 작은 경우에 적합한 등가선형해석을 이용한 액상화 평가를 실시하여 유효응력모델을 이용한 예측법과 비교하였다. 등가선형해석에서 계산된 전단응력비에 해당하는 표준관입시험치를 국내에서 발생 가능한 지진규모와 실트질 함유량에 따라 콘관입저항치로 환산한 값과 현장에서 계측된 콘관입저항치를 서로 비교하여 액상화 가능성을 예측하였다. 두 곳의 인천지역 매립지에 대한 액상화 해석을 위하여 매립지에서 계측된 콘관입저항치와 전단파 속도를 이용하여 입력 물성값을 결정하였다. 인천 매립지에 대한 두 액상화 해석 방법의 결과는 액상화 발생 여부에서 유사하였으며 깊이에 따른 연속적인 액상화 판정과 얇은 층의 액상화 예측이 가능하여 액상화 예측의 정밀도를 높였다. 유효응력모델을 이용한 액상화 해석 결과는 지표면 아래 20m 이내에서 초기 유효수직응력의 40%~70% 정도의 과잉간극수압이 발생하였으며 이로 인하여 지표면에서 10cm 미만의 침하가 발생하였다.

FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants

  • Kong, Yoon Soo;Park, Jun Woo;Choi, Dong Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.9.1-9.9
    • /
    • 2016
  • Background: As dental implants receive masticatory stress, the distribution of stress is very important to peri-implant bone homeostasis and implant survival. In this report, we created a saddle-type implant and analyzed its stability and ability to distribute stress to the surrounding bone. Methods: The implants were designed as a saddle-type implant (SI) that wrapped around the alveolar bone, and the sizes of the saddles were 2.5, 3.5, 4.5, and 5.5 mm. The X and Y displacement were compared to clarify the effects of the saddle structures. The control group consisted of dental implants without the saddle design (CI). Using finite element modeling (FEM), the stress distribution around the dental implants was analyzed. Results: With saddle-type implants, saddles longer than 4.5 mm were more effective for stress distribution than CI. Regarding lateral displacement, a SI of 2.5 mm was effective for stress distribution compared to lateral displacement. ASI that was 5.6 mm in length was more effective for stress distribution than a CI that was 10 mm in length. Conclusions: The saddle-type implant could have a bone-gaining effect. Because it has stress-distributing effects, it might protect the newly formed bone under the implant.

유효응력모델을 이용한 침매터널의 동적거동 해석 (Dynamic Analysis of an Immersed Tunnel using an Effective Stress Model)

  • 박성식;문홍득
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.51-58
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. In this paper, dynamic analysis of the tunnel on sandy soils was performed using an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel deformation due to cyclic loading. Centrifuge tests conducted at RPI are used to verify the model performance. Centrifuge tests consist of 3 models: Model 1 is designed for an original ground condition, Model 2 for a ground improvement by compaction method, Model 3 for a ground improvement by gravel drainage. The results of centrifuge Model 1 are presented and compared with predictions of UBCSAND model. This model well captured the results of centrifuge test and therefore can be used to predict dynamic behavior of similar tunnels or underground structures on sandy soils.

  • PDF