• Title/Summary/Keyword: Effective mean confining pressure

Search Result 10, Processing Time 0.023 seconds

A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation (DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측)

  • 박인준;김수일;정철민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.126-126
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.127-138
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Consolidation Test Method Considering Sample Deformation Due to Stress Release by Sampling (시료채취에 의한 응력해방시 시료변형을 고려한 압밀시험)

  • Kim Jae-Young;Takada Naotoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.99-105
    • /
    • 2004
  • When a saturated clay is sampled from a borehole in an undisturbed manner, the exerted negative pore water pressure restricts the volume expansion. The vertical and horizontal stresses to which the clay was subjected in the ground are smaller and larger than this isotropically confining stress equivalent to the mean principal stress in the ground, respectively. Therefore the sample expands vertically and shrinks laterally under an undrained condition. In the ordinary consolidation test, the sample thus deformed is trimmed to fit the inside of the consolidometer ring. Thus, the specimen generates larger consolidation displacement due to confining larger horizontal stress when in-situ effective pressure is loaded. The specimen does not reproduce the in-situ consolidation behavior, In this paper, considering sample deformation, the test specimen is made to expand laterally to fit the inside of the ring in the undrained manner when the in-situ effective pressure is loaded. And applicability of this proposed test procedure was verified; results from the conventional consolidation test procedure are also discussed.

The Behavior of Silt due to Volume Deformation Tendency (체적변형 경향에 따른 실트의 거동)

  • Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.255-260
    • /
    • 1993
  • The behavior of pure silt was investigated by using an automated triaxial testing device. The stress-strain behavior of silt due to the volume deformation tendency was compared with the behavior of clay prior to failure and behavior at failure under monotonic undrained compression and extension conditions. A pure silica flour was chosen to form samples. The isotropically normally-consolidated samples with 450 kPa of effective mean confining pressure and overconsolidated samples through unloading were tested. Based on the experimental results, it was qualitatively identified that the undrained strength of normally-consolidated silt increases due to its dilatant nature which is not seen in clay. Also the overconsolidated silt shows a significantly different behavior under the monotonic loadings due to the volume deformation tendency.

  • PDF

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

Undrained Behavior of Clay-Sand Mixtures under Triaxial Loading

  • Shin, Joon-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.71-81
    • /
    • 1999
  • A study on the undrained behavior of isotropically consolidated clay-sand mixtures was carried out using the automated triaxial testing apparatus. Overconsolidated ratio, effective mean pressure and clay content( up to 20% bentonite) were the factors varied in the experimental investigation. Undrained behavior(strength and pore water pressure generation during shear in triaxial loading) depends upon overconsolidation ratio, confining pressure and clay content. Significant changes in undrained compression characteristics occurred at around 20% of clay contents in the sand. The test results were analyzed and their behaviors were interpreted within the framework of plasticity constitutive model for clay-sand mixtures. Possible physical bases for the proposed forms are discussed. Validation of the applied model using the laboratory results is also given.

  • PDF

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process (등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰)

  • Kwon, Youngcheul;Bae, Wooseok;Oh, Sewook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.201-207
    • /
    • 2006
  • Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.