• 제목/요약/키워드: Effective impact speed

검색결과 114건 처리시간 0.03초

자동차 추돌사고 속도분석에 관한 사례 연구 (A Case Study on Speed Analysis of the Rear-end Collision Accident)

  • 김대봉;윤대권;박정호;하성용;박제철
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.724-729
    • /
    • 2016
  • This case study carried out a rear-end collision accident analysis and physical simulation of an SUV and passenger car. The speed of the SUV by physical analysis is 71 ~ 87 km/h, while the speed of the passenger car is 6 ~ 22 km/h. Simulation results showed the optimal speed conditions for the SUV was 71 km/h, and 7 km/h for the passenger car. Simulations can be verified for the collision analysis. The findings of this study are expected to increase the reliability of accident reconstructions.

도시지역의 보행자 풍환경 개선을 위한 구조물 분석 (Analysis of Structures for Improving Pedestrian Wind Environment in Urban Areas)

  • 박하준;우윤희;유무영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.231-232
    • /
    • 2023
  • With taller buildings and larger typhoons, the impact of building winds is growing. During the 11th Typhoon Hinnamno in 2022, the building wind in Busan L City exceeded 60m/s, reaching the highest speed ever. Although many studies have been conducted on reducing the wind load of buildings, which is one of the problem factors caused by strong wind speed, there is a lack of research on wind speed reducing sculptures that can directly control strong wind speed. In this paper, several types of wind speed reduction sculptures were proposed to solve these problems, and the wind speed reduction capability of the proposed sculptures was analyzed through computational fluid dynamics (CFD). These results can contribute to suggesting effective design methods for improving the urban environment and reducing pedestrian stress.

  • PDF

소형궤도차량 시스템에서 속도 프로파일 추종을 위한 제어시스템 구축에 관한 연구 (A Study on a Construction of Control System for the Tracking of a Speed Profile in the Personal Rapid Transit System)

  • 이준호;류상환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1069-1070
    • /
    • 2006
  • This study is concerned with the control system design using Labview Simulation Interface Toolkit and Matlab/simulink combined system for an application to the personal rapid transit system which has very short headway, requiring accurate speed control to avoid the impact between the vehicles. A simple equation of motion for a vehicle which is activated on the linear motor is introduced. A speed profile that should be tracked by a rear vehicle is produced based on the state information of the two vehicles(the preceding vehicle and the rear vehicle). The speed profile tracking control system is designed by Matlab/simulink. The simulation results show that the proposed control system is effective to evaluate the speed tracking performance.

  • PDF

풍력발전 시스템을 위한 풍속 추정기 개발 (Development of Wind Speed Estimator for Wind Turbine Generation System)

  • 김병문;김성호;송화창
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.710-715
    • /
    • 2010
  • 최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 일반적으로 풍속은 풍력발전시스템의 동특성에 큰 영향을 미치는 요소이다. 따라서 많은 풍력발전 제어 알고리듬은 성능향상을 위해 풍속의 측정을 요구하게 된다. 그러나 불행히도 풍속계와 같은 센서에 의한 실효 풍속의 정확한 측정은 어려운 실정이며 따라서 제어 시스템의 동작을 위해 풍속은 여러 가지 기법을 통해 추정되고 있는 실정이다. 이에 본 연구에서는 칼만 필터 및 신경망에 기반한 새로운 형태의 풍속 추정 기법을 제안하고 제안된 기법의 유용성 확인을 위해 다양한 형태의 시뮬레이션을 수행하고자 한다.

The Impact of Water Depth and Speed on Lower Muscles Activation During Exercise in Different Aquatic Environments

  • Gyu-sun, Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the effects of water depth and speed on the activation of lower muscles during squat exercises, utilizing electromyography(EMG). It involved ten male participants in there. Participants performed 30 squats over a minute at a speed of 60bpm and maximum speed squats until exhaustion within a minute. The Integrated electromyography(iEMG) readings for the rectus femoris showed statistically significant differences due to water depth and speed, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the biceps femoris also showed statistically significant differences, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the gastrocnemius showed statistically significant differences according to water depth and speed. However, the interaction effect of water depth and speed during squat exercises did not show a statistically significant difference. In contrast, the iEMG readings for the tibialis anterior demonstrated statistically significant differences, with a statistically significant interaction effect during squats. These findings suggest that water depth and speed positively influence the activation patterns of lower muscles. Therefore, appropriately tailored aquatic exercises based on water depth for individuals with musculoskeletal discomfort, including the elderly or those with physical impairments, can effectively reduce physical strain and enhance balance, as well as physical and perceptual aspects. It is concluded that such exercises could provide a safer and more effective method of exercise compared to ground-based alternatives.

4340강의 단열 전단밴드생성에 대한 유한요소해석 및 실험적 고찰 (Finite element analysis and experiment on the formation of adiabatic shear band in 4340 steel)

  • 정동택;유요한
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1134-1143
    • /
    • 1994
  • A study of adiabatic shear band formation and propagation of 4340 steel was done using the stepped speciment which was subjected to high velocity impact. The high velocity impact was performed on compression Hopkinson bar impact machine. After the controlled impact, the specimen was prepared for visual inspection. Numerical simulation was also performed with same geometrical dimension using explicit time integration finite element code. Experimental results were then compared with the numerical prediction. It was found that the numerical prediction is quite accurate, average thickness of adiabatic shear band is about $10{\mu}m$, the macro crack around shoulder is due to folding, and the deformation control ring is effective to freeze the propagation of adiabatic shear band.

스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석 (An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash)

  • 이경일;이희경
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

자연친화적인 급내리막 직선부에서 GHG 배출지표에 근거한 속도유지표준화 형태의 교통정온화 (Effect of Traffic Calming Using Speed-Maintained Standardization on Environment-Friendliness of Downward Slope Location based on GHG Emission Indicators)

  • 홍수정;오홍운
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.103-110
    • /
    • 2016
  • PURPOSES: In this paper, the effectiveness of speed-maintained standardization in road geometry on environmental impact at a downward slope location, based on greenhouse gas (GHG) emission indicators, was studied. Specifically, the aim of this study was to ascertain whether speed-maintained standardization resulted in decreased $CO_2$ emissions as well as noise pollution, due to reduced vehicle speeds. METHODS : In this study, speed-maintained standardization in road geometry was proposed as a means to reduce vehicle speeds, with a view to reducing $CO_2$ emissions and noise pollution. This technique was applied at a downward slope location. The vehicle speeds, $CO_2$ emissions, and noise levels before and after application of speed-maintained standardization were compared. RESULTS: It was found that speed-maintained standardization was effective as a means to reduce speed, as well as $CO_2$ emissions and noise pollution. By applying speed-maintained standardization, it was confirmed that vehicle speeds were reduced consistently. As a result, $CO_2$ emissions and noise levels were decreased by 9% and 11%, respectively. CONCLUSIONS : This study confirmed that speed-maintained standardization in road geometry is effective in reducing vehicle speeds, $CO_2$ emissions, and noise levels. Moreover, there is further scope for the application of this method in the design of roads in urban and rural areas, as well as in the design of highways.

런닝화의 경도 차이가 후족 제어 및 충격력에 미치는 영향 분석 (An Effect Analysis of Rearfoot Movement and Impact force by Different Design of Running Shoes Hardness)

  • 이동춘;이우창
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.291-296
    • /
    • 2002
  • The midsole hardness of athletic footwear affects capability of absorbing impact shock and controls rearfoot movement during running and walking. The prior studies were focused on examining the proper hardness of footwear for rearfoot movement or to finding effective hardness for absorbing impact shock. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral. Increasing hardness of footwear midsole are effected to reduce maximum and intial pronation angle, but declined the ability of impact shock during heelstrike. For determination of effectiveness hardness of midsole, therefore, the study that makes a compromise between rearfoot movement and absorbing impact during footstrike must be performed. The purpose of this study is to examine quantitative values of rearfoot control and absorbing impact shock with different hardness of medial and lateral midsole on heel portion. The results are useful to define biomechanical hardness of midsole for developing running shoes. As variable for impact shock, accelerations onto shank and knee are measured during 4 running speeds (5, 7, 9, 11km/h). Also, maximum and $10\%$ pronation angle (Achilles tendon angle) were measured using high-speed camera.

  • PDF

관측망 밀도 변화가 기상변수의 공간분포에 미치는 영향: 2019 강원영동 입체적 공동관측 캠페인 (Effects of Observation Network Density Change on Spatial Distribution of Meteorological Variables: Three-Dimensional Meteorological Observation Project in the Yeongdong Region in 2019)

  • 김해민;정종혁;김현욱;박창근;김백조;김승범
    • 대기
    • /
    • 제30권2호
    • /
    • pp.169-181
    • /
    • 2020
  • We conducted a study on the impact of observation station density; this was done in order to enable the accurate estimation of spatial meteorological variables. The purpose of this study is to help operate an efficient observation network by examining distributions of temperature, relative humidity, and wind speed in a test area of a three-dimensional meteorological observation project in the Yeongdong region in 2019. For our analysis, we grouped the observation stations as follows: 41 stations (for Step 4), 34 stations (for Step 3), 17 stations (for Step 2), and 10 stations (for Step 1). Grid values were interpolated using the kriging method. We compared the spatial accuracy of the estimated meteorological grid by using station density. The effect of increased observation network density varied and was dependent on meteorological variables and weather conditions. The temperature is sufficient for the current weather observation network (featuring an average distance about 9.30 km between stations), and the relative humidity is sufficient when the average distance between stations is about 5.04 km. However, it is recommended that all observation networks, with an average distance of approximately 4.59 km between stations, be utilized for monitoring wind speed. In addition, this also enables the operation of an effective observation network through the classification of outliers.