• Title/Summary/Keyword: Effective compressive strength

Search Result 658, Processing Time 0.024 seconds

Fundamental Properties on the Development of High Performance Shrinkage Reducing Agent for Concrete (콘크리트용 고성능 수축저감제 개발에 대한 기초적 특성)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4298-4307
    • /
    • 2015
  • The expenses of maintenance and reinforcement for aged concrete structures are significantly on the increase as their durability and general performance has been naturally degraded. Due to this reason, interests on concrete crack reduction technology are growing but more researches are required to fulfill such fast growing demands. Particularly in the underground power facilities, it is difficult to maintain the quality of aging concrete spheres for underground power as their deterioration caused by long-term operation is on-going. In recent years, many studies have been made to overcome the issues and now it is determined that the shrinkage reducing technology which can dramatically reduce the crack at the design stage is one of the most effective solutions. In this study, the test investigated fundamental propertiesof concrete using various shrinkage reducing materials to develop low shrinkage mortar. According to results of experimental study, for mortar and concrete, glycol based material showed excellent shrinkage property and compressive strength. For the later study to generic application of the shrinkage reducing materials, performance reviews on the shrinkage reducing materials with variable factors and various materials such as changes in the amount and type of materials should be followed.

Characteristic Evaluation of FA-Based Geopolymer with PLA Fiber (PLA 섬유를 가진 다공성 플라이애시 기반 지오폴리머의 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Cho, Young-Keun;Kim, Tae-Sang;Moon, Eun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Regarding physical absorption mechanism for fine particles(Dust), internal pore-bridging is a major parameter in porous media. In this paper, internal bridging pore system is invented through FA-based geopolymer and incorporated PLA (Polylactic Acid) fiber with biodegradability. With various mix proportions, compressive strength over 20MPa is obtained but PLA is little dissolved in the condition of NaOH 5mole and $30^{\circ}C$ of temperature, which was found that temperature rising accelerates PLA solubility. Within 24hours, beads type PLA is completely dissolved under $90{\sim}130^{\circ}C$ and NaOH 5~12mole of alkali. In room condition, geo-polymerization is limitedly occurs so that the internal pore after PLA dissolution is thought to be effective to absorption and storage of fine particles.

A Study on the Status and Actual Condition of Suspended Buildings in Gangwon (강원도 공사중단 건축물의 현황 및 실태 조사 연구)

  • Suhr, Myong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.138-144
    • /
    • 2019
  • To analyze the present state of buildings suspended in Gangwon and estimate the compressive strength by visual inspection and Schmidt hammer method in order to analyze durability etc.. In this study, we analyzed the problems that existed in the location where construction is suspended and efficient management method. Expected construction restoration of construction will be restarted, and important parts of the construction site should be given the best protection measures so that the quality can be maintained thoroughly. The construction of the suspended construction is exposed to the freezing and thawing damage over time. Therefore, it is necessary to take measures such as maintenance, and take protective measures by establishing a plan to improve the durability of buildings that are under construction.

3-Dimensional Strut-Tie Model Analysis and Design of Structural Concrete (콘크리트 구조부재의 3차원 스트럿-타이 모델 해석 및 설계)

  • Yun, Young Mook;Park, Jung Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.411-419
    • /
    • 2006
  • In this study, a new approach employing 3-dimensional strut-tie models for analysis and design of 3-dimensional structural concrete with disturbed regions that are not properly occupied by current design codes is proposed. In addition, a computer graphics program for the practical application of the approach is developed. The approach adopts a grid strut-tie model to exclude the subjectivity in the selection of strut-tie model and evaluates the effective strength of concrete strut by considering the 3-dimensional failure criteria of concrete and the deviation angles between the struts and compressive principal stress trajectories. To verify the appropriateness of the approach, nine pile caps tested to failure are analyzed and a bridge pier is designed. The analysis and design results are compared with those obtained by several different methods.

Developing Sustainable Inorganic Sound-Absorbing Panel Mixtures Using Industrial Waste (산업폐기물을 활용한 무기계 흡음 패널 개발 기초 연구)

  • Cheulkyu Lee;Seongwoo Gwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.501-508
    • /
    • 2023
  • Addressing urban noise problems, this study develops eco-friendly, inorganic sound-absorbing panels, overcoming the limitations of traditional PMMA and cement-based panels. These conventional panels pose safety risks due to flammability and environmental concerns due to carbon emissions. Utilizing industrial waste, the research comprises two phases: initial tests for physical and performance characteristics (fluidity, density, compressive strength, sound absorption) and subsequent development of optimized panel mixtures. This approach aims to replace existing panels with sustainable, effective alternatives, significantly contributing to safer, environmentally responsible urban infrastructure. The findings of this study have implications for the sound panel market, offering novel solutions for noise control while aligning with environmental and safety standards.

An Experimental Study on Evaluation of Axially Compressive Buckling Strength of Corroded Temporary Steel (부식 손상된 가시설 강재의 축압축 좌굴강도 추정에 관한 실험적 연구)

  • Kim, In Tae;Lee, Myoung Jin;Shin, Chang Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.135-146
    • /
    • 2011
  • Steel structures have been generally painted to prevent corrosion damage. However, the painted film is deteriorated with increase in service life, and then corrosion damage resulting in cross sectional area occurs on steel surface. As a result, the buckling strength of steel structures can be decreased due to the corrosion damages. The evaluation method of the axial buckling strength of columns about a variety of section shapes and supporting conditions have been presented, but evaluation method of buckling strength about irregular nonprismatic columns is not established. In this study, the axial buckling strength of corroded steels was evaluated based on the buckling test results of corroded steel specimens that were cut off at a temporary steel structure. The corroded specimens were picked up total 10 specimens according to various slenderness ratio from the web of a temporary structure's main beam. The length of specimens is 200, 300, 400, 500 and 600mm respectively. The rust productions were removed by the chemical treatment. Then, the surface geometry was measured at intervals of $1{\times}1mm$ by using the optical 3D digitizing system, and the residual thickness of the specimens was calculated. The axial buckling test was performed on 10 corroded specimens and 12 non-corroded specimens under the fixed-fixed support condition. From the test results, the effect of corrosion damages on axial buckling load was investigated. Regardless of corrosion damage degree, the axial buckling strength of corroded specimens and non-corroded specimens was evaluated identically by using minimum average residual thickness or average residual thickness to minus its standard deviation. Reasonable measuring intervals of residual thickness was proposed by using the results to apply for practical works.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Fundamental and Shrinkage Properties of High Performance Concrete in Combined with Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 조합 사용한 고성능콘크리트의 기초물성 및 수축특성)

  • Han Cheon-Goo;Kim Sung-Wook;Koh Kyoung-Taek;Cheol Han-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.605-612
    • /
    • 2004
  • This study investigated the fundamental properties and shrinkage properties of high performance concrete with water/binder ratio of 0, 30 and with combination of expansive additive and shrinkage reducing agent. According to the results, the fluidity of high performance concrete showed lower the using method in combination with expansive additive and shrinkage reducing agent than the separately using method of that, so the amount of superplasticizer increased when the adding ratio of expansive additive and shrinkage reducing agent increased. However the air content of concrete increased when used in combination with expansive additive and shrinkage reducing agent, so the amount of AR agent decreased. The compressive strength showed the highest at $5\%$ of expansive additive, and decreased with an increase of the amount of shrinkage reducing agent. Furthermore, in order to reduce the shrinkage of high performance concrete, it was found that the using method in combination with expansive additive and shrinkage reducing agent was more effective than separately using method of that. Therefore, it analyzed that the combination of expansive additive of $5\%$ and shrinkage reduction agent of $1\%$ was the most suitable mixture, considering to the fluidity, strength and shrinkage under the condition of this experiment.

Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam (과열증기 열처리 잣나무재의 물성 평가)

  • Park, Yong-Gun;Eom, Chang-Deuk;Park, Jun-Ho;Chang, Yoon-Seong;Kim, Kwang-Mo;Kang, Chun-Won;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.257-267
    • /
    • 2012
  • In this study, the method for heat treating wood using superheated steam (SHS) was designed and applied. The physical and mechanical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by SHS at $170^{\circ}C$ and 0.4 MPa for 10 hours were compared with those of non-treated and normal heat-treated wood. The amount of adsorbed water and equilibrium moisture content of the SHS treated wood were lower than non-treated wood. On the other hand the compressive strength parallel to grain and the bending strength of SHS treated wood were higher than those of non-treated wood. The hygroscopicity of SHS treated wood was similar to normal heat treated wood at $220^{\circ}C$. Internal checks that often occur during normal heat treatment were not developed at SHS treatment. Also, SHS treatment are effective in control of internal checks occurrence and resin exudation.

A Study on the Reduced Rebound Method of Surface Finishing Spray Photocatalytic Mortar (표면 마감 광촉매 스프레이 모르타르의 리바운드량 저감 방안 연구)

  • Baek, Hyo-Seon;Park, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.604-609
    • /
    • 2020
  • There are various methods of finishing concrete surfaces, and when considering workability, the spray method is effective, but rebound occurs. The allocation of rebound occurrence control should be adjusted according to the materials used. Thus, a basic study was conducted on multiple techniques for reducing the rebound incidence that are suitable for surface finishing materials containing a photocatalyst. A prior study derived the reduction effect and optimal mix ratio for photocatalytic performance. Based on that study, the rebound reduction was verified according to the specifications of the content and the mechanical durability characteristics of the mixed materials. Rebound, compressive strength, flexural rigidity, and table flow tests were done. The flow was fixed at 170±10 mm considering the workability of the mortar spray equipment. For the experimental variables, the rebound number was adjusted to the silica sand variables relative to the cement weight, and silica sands No. 5 and No. 7 were used. The results show the highest compression strength in the final S-1 variable, and the amount of rebound was minimized. These results were sufficiently filled with the bindings of the silica pores, which increased the binding force between the aggregates, resulting in a lower amount of rebound.