• Title/Summary/Keyword: Effective Tracking Algorithm

Search Result 226, Processing Time 0.034 seconds

Moving-Target Tracking Based on Particle Filter with TDOA/FDOA Measurements

  • Cho, Jeong-A;Na, Han-Byeul;Kim, Sun-Woo;Ahn, Chun-Soo
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.260-263
    • /
    • 2012
  • In this letter, we propose a moving-target tracking algorithm based on a particle filter that uses the time difference of arrival (TDOA)/frequency difference of arrival (FDOA) measurements acquired by distributed sensors. It is shown that the performance of the proposed algorithm, based on the particle filter, outperforms the one based on the extended Kalman filter. The use of both the TDOA and FDOA measurements is shown to be effective in the moving-target tracking. It is proven that the particle filter deals with the nonlinear nature of the movingtarget tracking problem successfully.

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.

Design fuzzy-genetic controller for path tracking in wheeled-mobile robot (구륜 이동 로보트의 경로 추적을 위한 Fuzzy-Genetic Controller 설계)

  • 김상원;김성희;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.512-515
    • /
    • 1997
  • In this paper the fuzzy-genetic controller for path-tracking of WMRs is proposed. Fuzzy controller is implemented to adaptive adjust the crossover rate and mutation rate, and genetic algorithm is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-genetic controller is effective.

  • PDF

Integration of Condensation and Mean-shift algorithms for real-time object tracking (실시간 객체 추적을 위한 Condensation 알고리즘과 Mean-shift 알고리즘의 결합)

  • Cho Sang-Hyun;Kang Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.273-282
    • /
    • 2005
  • Real-time Object tracking is an important field in developing vision applications such as surveillance systems and vision based navigation. mean-shift algerian and Condensation algorithm are widely used in robust object tracking systems. Since the mean-shift algorithm is easy to implement and is effective in object tracking computation, it is widely used, especially in real-time tracking systems. One of the drawbacks is that it always converges to a local maximum which may not be a global maximum. Therefore, in a cluttered environment, the Mean-shift algorithm does not perform well. On the other hand, since it uses multiple hypotheses, the Condensation algorithm is useful in tracking in a cluttered background. Since it requires a complex object model and many hypotheses, it contains a high computational complexity. Therefore, it is not easy to apply a Condensation algorithm in real-time systems. In this paper, by combining the merits of the Condensation algorithm and the mean-shift algorithm we propose a new model which is suitable for real-time tracking. Although it uses only a few hypotheses, the proposed method use a high-likelihood hypotheses using mean-shift algorithm. As a result, we can obtain a better result than either the result produced by the Condensation algorithm or the result produced by the mean-shift algorithm.

An Object Tracking Method for Studio Cameras by OpenCV-based Python Program (OpenCV 기반 파이썬 프로그램에 의한 방송용 카메라의 객체 추적 기법)

  • Yang, Yong Jun;Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.291-297
    • /
    • 2018
  • In this paper, we present an automatic image object tracking system for Studio cameras on the stage. For object tracking, we use the OpenCV-based Python program using PC, Raspberry Pi 3 and mobile devices. There are many methods of image object tracking such as mean-shift, CAMshift (Continuously Adaptive Mean shift), background modelling using GMM(Gaussian mixture model), template based detection using SURF(Speeded up robust features), CMT(Consensus-based Matching and Tracking) and TLD methods. CAMshift algorithm is very efficient for real-time tracking because of its fast and robust performance. However, in this paper, we implement an image object tracking system for studio cameras based CMT algorithm. This is an optimal image tracking method because of combination of static and adaptive correspondences. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the stage in real time.

A study of effective filter algorithms for multi-target tracking (다중표적추적을 위한 효과적인 필터 알고리듬에 대한 연구)

  • 이동관;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.99-99
    • /
    • 2000
  • An effect ive filter algorithm that can manage radar beam pointing efficiently is needed to track multi-target in the air. For effective beam management the filter has lobe good enough to predict future position of target and based on this filter output radar beam is control led to point toward the predicted target position in the air. In this paper, we investigate the ${\alpha}$-${\beta}$ filter known for its brief filter structure with the steady-state Kalman filter gain, the ruv filter, and the coordinate-transformed filter that can decouple the measurement noise variance.

  • PDF

Practical Implementation of Maximum Power Tracking Based Short-Current Pulse Method for Thermoelectric Generators Systems

  • Yahya, Khalid;Bilgin, Mehmet Zeki;Erfidan, Tarik
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1201-1210
    • /
    • 2018
  • The applications of thermoelectric generators (TEGs) have received a lot of attention both in terms of harvesting waste thermal energy and the need for multi-levels of power. It is critical to track the optimum electrical operating point using DC to DC converters controlled by a pulse that is generated through a maximum power point tracking algorithm (MPPT). In this paper, the hardware implementation of a short-current pulse algorithm has been demonstrated under steady stated and transient conditions. In addition, the MPPT algorithm has been proposed, which is one of the most effective and applicable algorithms for obtaining the maximum power point of TEGs. During this study, the proposed prototype has been validated both analytically and experimentally. It has also demonstrated successful performance, which highlights the claimed advantages of the proposed MPPT solution.

Three Dimensional Aerial Combat Simulation

  • Choi, Gi-Sang;Unhavanich, SumaLee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.90-90
    • /
    • 2001
  • This paper deals with the development of a practical control system or an algorithm for optimal aerobatic maneuvers and aerial combat maneuvers. First, a nonlinear flight trajectory tracking control system is synthesized and used to realize the optimal aerobatic maneuver. Some simulation results show that the trajectory achieved with the proposed tracking system is close to the optimal one. This means that the tracking system presented is the practical and effective method to realize the optimal aerobatic maneuvers. Second, the algorithm for a fighter in air combat is presented. This is a simple algorithm that uses a proportional navigation, some dynamic rules based on the conservation of specific energy and some experiential rules in air combat. However ...

  • PDF

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

A Fast Snake Algorithm for Tracking Multiple Objects

  • Fang, Hua;Kim, Jeong-Woo;Jang, Jong-Whan
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.519-530
    • /
    • 2011
  • A Snake is an active contour for representing object contours. Traditional snake algorithms are often used to represent the contour of a single object. However, if there is more than one object in the image, the snake model must be adaptive to determine the corresponding contour of each object. Also, the previous initialized snake contours risk getting the wrong results when tracking multiple objects in successive frames due to the weak topology changes. To overcome this problem, in this paper, we present a new snake method for efficiently tracking contours of multiple objects. Our proposed algorithm can provide a straightforward approach for snake contour rapid splitting and connection, which usually cannot be gracefully handled by traditional snakes. Experimental results of various test sequence images with multiple objects have shown good performance, which proves that the proposed method is both effective and accurate.