• Title/Summary/Keyword: Effective Elastic Constants

Search Result 41, Processing Time 0.03 seconds

우주급 경통 열-흡습 설계

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.108-113
    • /
    • 2005
  • Strucutral and hygrothermal analysis for a composite tube is carried out in this study, that provides critical parameters for the design of a highly dimensionally stable space telescope. Carpet plots for laminate effective engineering constants are generated and used for the best tube lay-ups with high elastic modulus and highly insensitive to thermal and moisture expansion, which is essential for maintaining optical alignment of opto-mechanical system under random force applied during a launch campaign and orbital thermal load. Despace in the longitudinal direction under hygrothermal load of the tubes constructed with the selected lay-ups is calculated for the validation of lay-up designs on the dimensionalstability. Dynamic analysis is also carried out to feature the resonant behaviour. A zig-zag triangular element accurately representing through thickness stress variations for laminated structures is developed in this study and incorporated into the structural and hygrothermal analysis.

  • PDF

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

An Evaluation Method on the Material Nonlinearity of the Structural Membrane (구조용 막재료의 재료 비선형성 평가기법)

  • 한상을;이승훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.197-204
    • /
    • 2001
  • The purpose of this paper is to develope the evaluation technique to find proper elastic constants that characterize the material nonlinearity of structural membrane. The stress-strain curves of membrane material show strong nonlinearity. But generally the analysis is carried out under the assumption on material linear and geometrical nonlinear method. Because, it is very difficult to evaluate proper tangential stiffness. This paper use multi-step-linear approximation method taking the concept of effective stress for the evaluation of stiffness of membrane material, and then compare the results between linear and nonlinear analysis. Also. it shows better results than linear method

  • PDF

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

Elasticity and Conduction analysis of multi-Phase, Misoriented Metal matrix Composites (방향분포를 가진 다상 금속복합재료의 탄성 및 전도해석에 관한 연구)

  • 정현조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2181-2193
    • /
    • 1995
  • The effective elasticity and conduction of composite materials containing arbitrarily oriented multiple phases has been analyzed using the concept of orientation-dependent average fields and concentration factors. The analysis provided closed form expressions for the effective stiffnesses and conductivities. Under the prescribed boundary conditions, the concentration factors were evaluated by the equivalent inclusion principle, through which the interaction between various phases is approximated by the Mori-Tanaka mean-field approximation. SiC particulate(SiC$_{p}$) reinforce aluminum(Al) matrix composites were fabricated and their elastic constants and electrical conductivities were measured together with a careful study of their microstructure. The measured properties showed a systematic anisotropy and this behavior could be attributed to the preferred orientation of SiC$_{p}$. The theoretical model developed was applied to the computation of the anisotropic properties of these composites. Both two-phase and three-phase composites were considered based on the microstructural information. The SiC$_{p}$ was modeled as an ellipsoid with planar random orientation distribution in the extruded Al/SiC$_{p}$ composites. The effect of extraneous phase such as intermetallic compounds was also investigated.tigated.

Free Vibration Analysis of Perforated Shell Submerged in Fluid (유체에 잠긴 다공 원통형 쉘의 자유진동해석)

  • Jhung Myung-Jo;Jo Jong-Chull
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.247-258
    • /
    • 2006
  • For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with equivalent material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load

  • Arani, Ali Ghorbanpour;Maraghi, Zahra Khoddami;Ferasatmanesh, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • This research investigated the vibration frequency of sandwich plate made of piezoelectric fiber reinforced composite core (PFRC) and face sheets of piezomagnetic materials. The effective electroelastic constants for PFRC materials are obtained by the micromechanical approach. The resting medium of sandwich plate is modeled by Pasternak foundation including normal and shear modulus. Besides, sandwich plate is subjected to linearly varying normal stresses that change by load factor. The coupled equations of motion are derived using first order shear deformation theory (FSDT) and energy method. These equations are solved by differential quadrature method (DQM) for simply supported boundary condition. A detailed numerical study is carried out based on piezoelectricity theory to indicate the significant effect of load factor, volume fraction of fibers, modulus of elastic foundation, core-to-face sheet thickness ratio and composite materials on dimensionless frequency of sandwich plate. These findings can be used to aerospace, building and automotive industries.

Fatigue Crack Growth Rate Equation by Crack Closure (균열닫힘현상을 고려한 피로균열전파식)

  • 김용수;강동명;신근하
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 1991
  • We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$ $K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$ $K_{eff}$­$\Delta$ $K_{o}$ )$^{m}$ / ($\Delta$ $K_{eff}$­$\Delta$K) Where, A and m are material constants, and $\Delta$ $K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.

  • PDF

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

The recombination velocity at III-V compound heterojunctions with applications to Al/$_x$/Ga/$_1-x$/As-GaAs/$_1-y$/Sb/$_y$/ solar cells

  • 김정순
    • 전기의세계
    • /
    • v.28 no.4
    • /
    • pp.53-63
    • /
    • 1979
  • Interface recombination velocity in $Al_{x}$G $a_{1-x}$ As-GaAs and $Al_{0.85}$, G $a_{0.15}$ As-GaA $s_{1-y}$S $b_{y}$ heterojunction systems is studied as a function of lattice mismatch. The results are applied to the design of highly efficient III-V heterojunction solar cells. A horizontal liquid-phase epitaxial growth system was used to prepare p-p-p and p-p-n $Al_{x}$G $a_{1-x}$ As-GaA $s_{1-y}$S $b_{y}$-A $l_{x}$G $a_{1-x}$ As double heterojunction test samples with specified values of x and y. Samples were grown at each composition, with different GaAs and GaAs Sb layer thicknesses. A method was developed to obtain the lattice mismatch and lattice constants in mixed single crystals grown on (100) and (111)B oriented GaAs substrates. In the AlGaAs system, elastic lattice deformation with effective Poisson ratios .mu.$_{eff}$ (100=0.312 and .mu.$_{eff}$ (111B) =0.190 was observed. The lattice constant $a_{0}$ (A $l_{x}$G $a_{1-x}$ As)=5.6532+0.0084x.angs. was obtained at 300K which is in good Agreement with Vegard's law. In the GaAsSb system, although elastic lattice deformation was observed in (111) B-oriented crystals, misfit dislocations reduced the Poisson ratio to zero in (100)-oriented samples. When $a_{0}$ (GaSb)=6.0959 .angs. was assumed at 300K, both (100) and (111)B oriented GaAsSb layers deviated only slightly from Vegard's law. Both (100) and (111)B zero-mismatch $Al_{0.85}$ G $a_{0.15}$As-GaA $s_{1-y}$S $b_{y}$ layers were grown from melts with a weight ratio of $W_{sb}$ / $W_{Ga}$ =0.13 and a growth temperature of 840 to 820 .deg.C. The corresponding Sb compositions were y=0.015 and 0.024 on (100) and (111)B orientations, respectively. This occurs because of a fortuitous in the Sb distribution coefficient with orientation. Interface recombination velocity was estimated from the dependence of the effective minority carrier lifetime on double-heterojunction spacing, using either optical phase-shift or electroluminescence timedecay techniques. The recombination velocity at a (100) interface was reduced from (2 to 3)*10$^{4}$ for y=0 to (6 to 7)*10$^{3}$ cm/sec for lattice-matched $Al_{0.85}$G $a_{0.15}$As-GaA $s_{0.985}$S $b_{0.015}$ Although this reduction is slightly less than that expected from the exponential relationship between interface recombination velocity and lattice mismatch as found in the AlGaAs-GaAs system, solar cells constructed from such a combination of materials should have an excellent spectral response to photons with energies over the full range from 1.4 to 2.6 eV. Similar measurements on a (111) B oriented lattice-matched heterojunction produced some-what larger interface recombination velocities.ities.ities.s.

  • PDF