• Title/Summary/Keyword: Effect of Flow Velocity

Search Result 1,722, Processing Time 0.032 seconds

A NUMERICAL STUDY ON FLOW PATTERN IN CONNECTING PASSAGEWAY OF A COMPOSITE BUILDING (복합 건축물 연결 통로에서의 기류형성에 관한 수치적 해석 연구)

  • Jeon, B.J.;Jang, B.Y.;Choi, H.G.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.81-86
    • /
    • 2010
  • In this paper, a three-dimensional numerical study on flow pattern in winter along connecting passageway of a composite building was conducted using a commercial CFD package. The incompressible Navier-Stokes equation coupled was solved by using SIMPLE algorithm in order to find steady solutions. It was shown that a upward flow is generated inside the building in winter due to buoyancy effect and that the air inside connecting passageway flows from the shorter building to the taller one regardless of the slope of the passageway. Further, it was found that the magnitude of air velocity inside connecting passageway increases as the uphill slope to the taller building increases and decreases as the downhill slope to the taller one increases, although the variation in the magnitude of fluid velocity is not substantial. Lastly, it was shown that the maximum air velocity inside connecting passageway is less than the allowable limit for all the cases considered in this study.

Experimental Study on the Flow around a Circular Cylinder with Tripping Wires (트리핑 와이어가 설치된 원형실린더 주위의 유동현상 연구)

  • 류병남;부정숙;조민기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.413-422
    • /
    • 2004
  • The flow characteristic in the wake around a circular cylinder with tripping wires, which was set in constant distance, was experimentally investigated in the uniform flow, Re=2.92$\times10^4$. The measurement of velocity vector and pressure distribution are carried out various angles of tripping wires in the range of $50^(\circ)$ to $80^(\circ)$ with $10^(\circ)$ interval. The results show that velocity profiles and pressure distributions are different with angles of tripping wires. The drag of the circular cylinder was decreased about 60% maximum when tripping wires' angle was $50^(\circ)$. The lowest reduction of the velocity and wake width was occurred by coanda effect when the angle was $60^(\circ)$, and the vortex shedding periodicity become rare at the same time.

제주도 동부 해안대수층에서의 수평 유향.유속 검층자료 해석

  • Kim Gu-Yeong;Seong Hyeon-Jeong;Kim Tae-Hui;Park Gi-Hwa;Park Yun-Seok;Go Gi-Won;Park Won-Bae;U Nam-Chil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.271-275
    • /
    • 2005
  • The horizontal heat-pulse flowmeter was used to measure grounwater flow in volcanic rocks at sites in eastern part of Jeju Island, Korea. Three boreholes, Handong-1, Jongdal-1, and Susan-1, which are located at close distance from the coastline, were selected from the sea water intrusion monitoring wells. To evaluate the direction and velocity of the groundwater flow, 6 to 8 measuring points for each borehole were chosen. There are two major flow directions at Handong-1, which are toward north-east and south-east directions and velocity ranges from $2.2{\sim}3.0cm/hr\;and\;0.6{\sim}1.0cm/hr$, respectively. For Jongdal-1, two major flow directions were detected that are east and north-west and velocity ranges from $1.2{\sim}2.0cm/hr$. For Susan-1, major flow is toward east direction and the ,velocity ranges from $2.2{\sim}2.7cm/hr$ at depth $60{\sim}70m$,\;and\;0.8{\sim}0.9cm/hr$ at depth $70{\sim}80m$. In order to evaluate the tidal effect on groundwater flow, direction and velocity were measured at specific depth with time, At depth 57m of Susan-1, the velocity increased during the tidal variation, The flow direction and velocity varies with different depths, and they are also affected by tidal fluctuation. Thereafter, care must be taken when flow direction and velociy is estimated indirectly by using hydraulic head at monitoring wells.

  • PDF

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

Study of Mass and Flow Resistance in a Square Ribbed Microchannel using Lattice Boltzmann Method

  • Taher, Mohammad Abu;Kim, Heuy-Dong;Lee, Yeon-Won
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.207-214
    • /
    • 2014
  • Mass and flow resistance in a square ribbed microchannel have been studied numerically using the Lattice Boltzmann Method. It has been build up on two dimensional nine velocity vectors model with single relaxation time method called the Lattice Bhatnagor-Gross-Krook model. To analyze the roughness effect on the flow resistance namely the friction factor and mass flow has been discussed at the slip flow regime, $0.01{\leq}Kn{\leq}0.10$, where Kn is the Knudsen number. The wall roughness is considered by square microelements with a relative roughness height up to maximum 10% of channel height. The velocity profiles in terms of streamlines near the riblets are demonstrated to be responsible for the roughness effect. It is found that the roughness effect leads to increase the flow resistance with roughness height but it is decreased significantly with increasing the space between two roughness elements as well as the Knudsen number. In addition, the mass flow decreased linearly with increasing both roughness height and gap but significantly changed at the slip flow regime.

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

Dynamic Behavior of an Internal Loop Reactor during Scale-up (내부순환반응기의 Scale-up에 따른 동력학적 특성의 변화)

  • 최윤찬;박영식
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 1997
  • The variations of gas hold-up, overall volumetric oxygen mass transfer coefficients and liquid circulation velocity in an internal loop reactor were investigated to manifest scale-up effect. The relationship between superficial gas velocity and gas hold-up were found as Ugr = 0.045 $\varepsilon$r in the pilot-scale and Ugr = 0.056 $\varepsilon$r in the bench-scale reactor. The overall volumetric oxygen mass tractsfer coefficient, KLa was slightly increased in the pilot-scale than in the bench-scale reactor. Flow regime was changed from the bubble flow to the churn-turbulent flow when the superficial gas velocity reached to 3.5 - 4 cm/sec in the pilot-scale.

  • PDF

Study on Effect of gas superficial velocity on particle behavior in three phased Slurry Bubble Column Reactor (3상 Slurry Bubble Column Reactor에서 기체유속에 따른 고체입자의 거동에 대한 연구)

  • Yang, Jung-Hoon;Yang, Jung-Il;Lee, Ho-Tae;Kim, Hak-Joo;Chun, Dong-Hyun;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.876-879
    • /
    • 2009
  • Fischer-Tropsch 합성 반응과 같은 slurry bubble column reactor에서는 반응 속도를 증진시키기 위해서는 서로 다른 상간의 접촉 면적을 최대화함으로써 물질 전달을 원활하게 유지하여야 한다. 특히 Fischer-Tropsch 합성 반응에서는 반응물인 기체가 촉매로서 기능하는 고체 표면으로의 external mass transfer가 효과적으로 이루어져야 하기 때문에 반응기 내의 기체의 거동뿐만 아니라 고체인 촉매의 분포에 대한 연구가 활발하게 이루어지고 있다. 따라서 본 연구에서는 반응기 내에 기체의 superficial velocity를 변화시키면서 기체의 hold up 뿐만 아니라 고체 입자의 분포특성에 대하여 관찰하였다. Superficial velocity가 증가함에따라 gas hold up의 경우, 일정하게 증가하다가 6 cm/sec 이상에서 그 증가폭이 감소하였다. 즉 6 cm/sec이상에서 turbulent flow regime을 형성하였다. 또한 고체입자의 분포 역시 기체의 superficial velocity가 증가함에따라 보다 균일하게 되는 것을 확인할 수 있었다.

  • PDF

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Vector Fields and Mean Velocities - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 벡터장 및 평균속도에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 2000
  • This paper represents the vector fields and three dimensional mean velocities in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. This experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component is focused in the narrow slits distributed radially on the edge of a cone type swirl burner, for that reason, there is some entrainment of ambient air in the outer region of the burner and the rotational flow can be shown in the inner region of the burner because mean velocity W is distributed about twice as large as mean velocity V due to inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the mean velocities are largely distributed near the outer region of burner within $X/R{\fallingdotseq}1.5$, hence, the turbulent characteristics are anticipated to be distributed largely in the center of this region due to the large inclination of mean velocity and swirl effect.

  • PDF

The Change of Blood Flow Velocity of Radial Artery after Linear Polarized Infrared Light Radiation near the Stellate Ganglion: Comparing with the Stellate Ganglion Block (성상신경절 부위의 직선편광 근적외선 조사 후 요골동맥에서의 혈류속도의 변화: 성상신경절 차단술과의 비교)

  • Han, Soung-Moon;Lee, Sang-Chul
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.37-40
    • /
    • 2001
  • Background: It had been reported by authors that linear polarized infrared light radiation (Superizer: SL) near the stellate ganglion had a similar effect on the change of skin temperature of hand compared with the stellate ganglion block (SGB). We hypothesized that this was due to dilatation of vessels and an increased blood flow. The aim of this study was to measure the velocity of blood flow in peripheral vessels after linear polarized infrared light radiation near the stellate ganglion and to compare the effect of SL with that of SGB using local anesthetics. Methods: Forty patients whose clinical criteria were matched for the symptoms of SGB were selected for study. We radiated the stellate ganglion by linear polarized infrared light radiation and measured the blood flow of radial artery using Ultrasound Doppler blood flow meter before and after 10, 20 and 30 minutes post-radiation. After 3 days, SGB was performed using 8 ml of 1% mepivacaine to the same patient, and the radial artery blood flow was measured in the same manner. Results: The blood flow velocity was increased by 40% and 27% at 10 min and 20 min after SL and by 42% and 41% at 10 min and 20 min after SGB. However, there was no statistically significant difference in blood flow velocity between SGL and SGB. Conclusions: We could conclude that linear polarized radiation is a clinically simple and useful noninvasive therapeutic tool in clinical area.

  • PDF