• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.049 seconds

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

Development and Application of a Big Data Platform for Education Longitudinal Study Analysis (교육종단연구 분석을 위한 빅데이터 플랫폼 개발 및 적용)

  • Park, Jung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.11-27
    • /
    • 2020
  • In this paper, we developed a big data platform to store, process, and analyze effectively on such education longitudinal study data. And it was applied to the Seoul Education Longitudinal Study(SELS) to confirm its usefulness. The developed platform consists of data preprocessing unit and data analysis unit. The data preprocessing unit 1) masking, 2) converts each item into a factor 3) normalizes / creates dummy variables 4) data derivation, and 5) data warehousing. The data analysis unit consists of OLAP and data mining(DM). In the multidimensional analysis, OLAP is performed after selecting a measure and designing a schema. The DM process involves variable selection, research model selection, data modification, parameter tuning, model training, model evaluation, and interpretation of the results. The data warehouse created through the preprocessing process on this platform can be shared by various researchers, and the continuous accumulation of data sets makes further analysis easier for subsequent researchers. In addition, policy-makers can access the SELS data warehouse directly and analyze it online through multi-dimensional analysis, enabling scientific decision making. To prove the usefulness of the developed platform, SELS data was built on the platform and OLAP and DM were performed by selecting the mathematics academic achievement as a measure, and various factors affecting the measurements were analyzed using DM techniques. This enabled us to quickly and effectively derive implications for data-based education policies.

A Study on Consumer perception changes of online education before and after COVID-19 using text mining (텍스트 마이닝을 활용한 온라인 교육에 대한 소비자 인식 변화 분석: COVID-19 전후를 중심으로)

  • Sohn, Minsung;Im, Meeja;Park, Kyunghwan
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.29-43
    • /
    • 2021
  • Coinciding with the advent of COVID-19, online education is on the rise both domestically and globally, and has become an absolutely necessary and irreplaceable form of education. It is a very curious question what the perception of people about the suddenly growing form of education is, and how it has changed. This study investigated changes in consumers' perception of online education using big data. To this end, we divided the time into four stages: before COVID-19 (November to December 2019), after the triggering of COVID-19 (January to February 2020), right after the online classes started (March to April 2020), after experiencing some online education (May to June 2020). Then we conducted text mining, namely, keyword frequency analysis, network analysis, word cloud analysis, and sentiment analysis were performed. The implications derived as a result of the analysis can help education policy makers and educators working in the field to improve online education quality and establish its future directions.

Text-mining based Cause Analysis of Accidents at Workplaces in Korea (텍스트 마이닝 기법을 활용한 우리나라 산업재해의 원인분석)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • The analysis of the causes of accidents in workplaces where machines and tools are used is essential to improve the effectiveness and efficiency of safety prevention policies in places of employment in Korea. The causes of workplace accidents are not fully understood mainly due to difficulties in analyzing available descriptive information. This study focuses on the automated accident cause analysis in workplaces based on the accident abstracts found in industrial accident reports written in an unstructured descriptive format. The method proposed in this paper is based on text data mining and uses the keyword search function of Excel software to automate the analysis. The analysis results indicate that the primary reason for the frequency of accidents is related to technical aspects at a stage in which dangerous situations occur in the workplace. Accidents due to managerial causes are typically observed when danger exists in the workplace; however, managerial actions play a more important role in reducing accident severity. A small company tends to use unsafe machines and devices, leading to further accidents due to technical causes, whereas managerial causes are more conspicuous as the company grows. To preclude the occurrence of accidents due to inadequate knowledge, the implementation of safety management and the provision of safety education to elderly workers at the early stage of their employment are particularly important for small companies with less than 100 workers.

How Query by humming, a Music Information Retrieval System, is Being Used in the Music Education Classroom

  • Bradshaw, Brian
    • Journal of Multimedia Information System
    • /
    • v.4 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • This study does a qualitative and quantitative analysis of how music by humming is being used by music educators in the classroom. Music by humming is part division of music information retrieval. In order to define what a music information retrieval system is first I need to define what it is. Berger and Lafferty (1999) define information retrieval as "someone doing a query to a retrieval system, a user begins with an information need. This need is an ideal document- perfect fit for the user, but almost certainly not present in the retrieval system's collection of documents. From this ideal document, the user selects a group of identifying terms. In the context of traditional IR, one could view this group of terms as akin to expanded query." Music Information Retrieval has its background in information systems, data mining, intelligent systems, library science, music history and music theory. Three rounds of surveys using question pro where completed. The study found that there were variances in knowledge, training and level of awareness of query by humming, music information retrieval systems. Those variance relationships where based on music specialty, level that they teach, and age of the respondents.

A Trend Analysis of Computer Education based on SNS Data through Data Mining Analysis (텍스트마이닝 분석을 활용한 SNS 데이터 기반의 정보교육의 동향 분석 연구)

  • Kim, Kapsu;Chun, Seokju;Koo, Dukhoi;Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.289-300
    • /
    • 2021
  • SNS data was collected and analyzed by topic modeling techniques to examine recent trends in information education. By deriving keywords and topics for SW education and AI education, we not only attempted to discover insights ahead of the next revised curriculum but also suggested directions. According to the SNS data analysis, the contents of human resource development for software and the instructional method in schools are indicated as a high requirement. Meanwhile, SW education should be conducted through a separate curriculum from elementary school, and this was consistent with the opinion that it is necessary to be organized as a required subject. There was an opinion to support the schools since AI education is newly introduced in next revised national curriculum. The trends in SW education and AI education which are observed through SNS data analysis could be concluded to conduct the substantial operation of information education and curriculum organization.

A Study on Learner Modeling Technology and Applications for Intelligent Tutoring Systems (지능형 교육 시스템을 위한 학습자 모델 기술과 응용 연구)

  • Yoon, Taebok;Lee, Jee-Hyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6455-6460
    • /
    • 2013
  • Learner modeling forms the foundations for intelligent tutoring systems that provide adaptive and active learning guidance for learning and education quality enhancement. The aim of this study was to develop learner modeling technologies to form the foundation of intelligent tutoring systems. Specific research tasks include learner modeling building techniques, diverse learner state diagnosis methods and educational data mining.

Topic Analysis on the Adolescent Problem Using Text Mining (텍스트 마이닝을 이용한 시대별 청소년 문제 토픽 분석)

  • Cho, Kyoung Won;Cho, Ju-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.203-204
    • /
    • 2018
  • This research was conducted to identify adolescent problems in internet articles. This research defines adolescent problems as diverse issues related to adolescents and examine how it was dealt in the media to find out how different categories and the aspect of adolescent problems are changing by time. The result of the research was that in 1990's, education policy and family were mainly dealt with when it came to adolescent problems. As the era is changing, adolescent problems were far diversified compared to the past, and each problems are dealt with similar importance. This research is significant in that it does not only examine the social trend adolescent problems but also expand the range of adolescent counselling and utilizes quantitative analysis in considering diversity to provide new information.

  • PDF

Analysis of Overseas Research Trends Related to Artificial Intelligence (AI) in Elementary, Middle and High School Education (초·중·고 교육분야의 인공지능(AI) 관련 해외 연구동향 분석)

  • Jung, Young-Joo;Kim, Hea-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.3
    • /
    • pp.313-334
    • /
    • 2021
  • This study aimed to analyze AI research trends related to elementary, middle, and high school education. To this end, the related literature was collected from the SCOPUS database and the publication period of the collected literature was from 1974 to March 2021, with 154 journal papers and 571 conference papers. Research trends were analyzed based on the co-occurrences analysis technique of 4,521 words of author keyword and index keyword included in these papers. As a result of the analysis, big data, data mining, data science and deep learning were found as the latest research trends with machine learning and there was a difference between elementary, middle and high school education. It can be seen that elementary school had a lot of robot-related research, middle school had a lot of game and data-related research, and high school had various and in-depth research. In discussion, we mapped the top 50 words common to elementary, middle, and high schools with the 'Artificial Intelligence Basics' curriculum of Korean Government and '5 Big Ideas' of the United States Government so that AI research can be viewed at a glance.

Model for Quality Assessment of Data Analytics Software in Manufacturing-Based IIoT Environments (제조 기반 IIoT 환경에서 데이터 분석 소프트웨어의 품질 평가를 위한 모델)

  • Choi, Jongseok;Shin, Yongtae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.292-299
    • /
    • 2021
  • A form of data mining software, based on manufacturing-based IIoT environment with the development of IT technologies are increasingly growing. However, it is difficult to evaluate the software quality in the same form as general software due to the characteristics of the software of a manufacturing company that has a large amount of data that needs to be carried out with big data and data mining. In addition, in a manufacturing-based environment where heterogeneous equipment and software are mixed, it is difficult to perform quality judgment on software used by applying existing quality characteristics. Therefore, in this paper, the characteristics of the manufacturing base are investigated, and a software quality evaluation model suitable for it is developed and evaluated.