• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.026 seconds

A study on the Analysis and Forecast of Effect Factors in e-Learning Reuse Intention Using Rule Induction Techniques (규칙유도기법을 이용한 이러닝 시스템의 재이용의도 영향요인 분석 및 예측에 관한 연구)

  • Bae, Jae-Kwon;Kim, Jin-Hwa;Jeong, Hwa-Min
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.2
    • /
    • pp.71-90
    • /
    • 2010
  • Electronic learning(or e-learning) has created hype for companies, universities, and other educational institutions. It has led to the phenomenal growth in the use of web-based learning and experimentation with multimedia, video conferencing, and internet-based technologies. Many researchers are interested in the factors that affect to the performance of e-learning or e-learning services. In this sense, this study is aimed at proposing e-learning system reuse prediction models in which e-learner intention to reuse influence factors(i.e., system accessibility, system stability, information clarity, information validity, self-regulated efficacy, computer self-efficacy, perceived usefulness, perceived ease of use, flow, and parental expectation) affect e-learner intention to reuse positively. A web survey was conducted for the full members of the e-learning education institute A in Seoul, Republic of Korea, an exclusive e-learning company that provides real time video lectures via the desktop conferencing system. The web survey was conducted for 20 days from November 5, 2009, through the e-learning web site of the company A. In this study, three data mining techniques were used : the multivariate discriminant analysis, CART, and C5.0 algorithm. This study was conducted to provide the e-learning service providers, e-learning operators, and contents developers with marketing and management strategies for improving the e-learning service companies, based on the data mining analysis results.

  • PDF

Examining and Analyzing Influential Factors of Ego-resilience: By Applying Data Mining Analysis (자아탄력성의 영향요인 탐색: 데이터 마이닝 분석의 적용)

  • Ju-Yeon LEE;Ji-Hyeon KANG;Sung-Yae JANG;Soo-Jin YOO
    • The Journal of Counseling Psychology Education Welfare
    • /
    • v.6 no.1
    • /
    • pp.125-136
    • /
    • 2019
  • This study was conducted to examine the significant factors affecting ego-resilience using the data mining technique for large-scale data from the Korean Children & Youth Panel Survey (KCYPS). The KCYPS data of this study were the data elementary school students in the their 5th survey (2,070 8th grade students). The purpose of the study was to analyze the influence factors of elementary, middle, and high school panel subjects and to analyze the trends by year. The results of this study are as follows. First, in order to find the factors affecting ego-resilience in middle school students, the correlation showed that individual development factors such as emotional problems, self-esteem, self-identity, life goals, and satisfaction and developmental environment factors such as parenting style, peer attachment, and school life adaptation were correlated. Second, decision tree analysis was conducted to examine the influence of ego-resilience on middle school students and the results showed that individual development factors and environmental factors were found to be influential. The results of this study suggest a future direction for research related to the ego-resilience of adolescents through examining the factors that affect their ego-resilience from middle school and analyzing the factors affecting ego-resilience.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

A Study on Artificial Intelligence Ethics Perceptions of University Students by Text Mining (텍스트 마이닝으로 살펴본 대학생들의 인공지능 윤리 인식 연구)

  • Yoo, Sujin;Jang, YunJae
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.947-960
    • /
    • 2021
  • In this study, we examine the AI ethics perception of university students to explore the direction of AI ethics education. For this, 83 students wrote their thoughts about 5 discussion topics on online bulletin board. We analyzed it using language networks, one of the text mining techniques. As a result, 62.5% of students spoke the future of the AI society positively. Second, if there is a self-driving car accident, 39.2% of students thought it is the vehicle owner's responsibility at the current level of autonomous driving. Third, invasion of privacy, abuse of technology, and unbalanced information acquisition were cited as dysfunctions of the development of AI. It was mentioned that ethical education for both AI users and developers is required as a way to minimize malfunctions, and institutional preparations should be carried out in parallel. Fourth, only 19.2% of students showed a positive opinion about a society where face recognition technology is universal. Finally, there was a common opinion that when collecting data including personal information, only the part with the consent should be used. Regarding the use of AI without moral standards, they emphasized the ethical literacy of both users and developers. This study is meaningful in that it provides information necessary to design the contents of artificial intelligence ethics education in liberal arts education.

Development of newly recruited privates on-the-job Training Achievements Group Classification Model (신병 주특기교육 성취집단 예측모형 개발)

  • Kwak, Ki-Hyo;Suh, Yong-Moo
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.101-113
    • /
    • 2007
  • The period of military personnel service will be phased down by 2014 according to 'The law of National Defense Reformation' issued by the Ministry of National Defense. For this reason, the ROK army provides discrimination education to 'newly recruited privates' for more effective individual performance in the on-the-job training. For the training to be more effective, it would be essential to predict the degree of achievements by new privates in the training. Thus, we used data mining techniques to develop a classification model which classifies the new privates into one of two achievements groups, so that different skills of education are applied to each group. The target variable for this model is a binary variable, whose value can be either 'a group of general control' or 'a group of special control'. We developed four pure classification models using Neural Network, Decision Tree, Support Vector Machine and Naive Bayesian. We also built four hybrid models, each of which combines k-means clustering algorithm with one of these four mining technique. Experimental results demonstrated that the highest performance model was the hybrid model of k-means and Neural Network. We expect that various military education programs could be supported by these classification models for better educational performance.

Topic Modeling on Research Trends of Industry 4.0 Using Text Mining (텍스트 마이닝을 이용한 4차 산업 연구 동향 토픽 모델링)

  • Cho, Kyoung Won;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.764-770
    • /
    • 2019
  • In this research, text mining techniques were used to analyze the papers related to the "4th Industry". In order to analyze the papers, total of 685 papers were collected by searching with the keyword "4th industry" in Korea Journal Index(KCI) from 2016 to 2019. We used Python-based web scraping program to collect papers and use topic modeling techniques based on LDA algorithm implemented in R language for data analysis. As a result of perplexity analysis on the collected papers, nine topics were determined optimally and nine representative topics of the collected papers were extracted using the Gibbs sampling method. As a result, it was confirmed that artificial intelligence, big data, Internet of things(IoT), digital, network and so on have emerged as the major technologies, and it was confirmed that research has been conducted on the changes due to the major technologies in various fields related to the 4th industry such as industry, government, education field, and job.

An Exploratory Analysis of Online Discussion of Library and Information Science Professionals in India using Text Mining

  • Garg, Mohit;Kanjilal, Uma
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.3
    • /
    • pp.40-56
    • /
    • 2022
  • This paper aims to implement a topic modeling technique for extracting the topics of online discussions among library professionals in India. Topic modeling is the established text mining technique popularly used for modeling text data from Twitter, Facebook, Yelp, and other social media platforms. The present study modeled the online discussions of Library and Information Science (LIS) professionals posted on Lis Links. The text data of these posts was extracted using a program written in R using the package "rvest." The data was pre-processed to remove blank posts, posts having text in non-English fonts, punctuation, URLs, emails, etc. Topic modeling with the Latent Dirichlet Allocation algorithm was applied to the pre-processed corpus to identify each topic associated with the posts. The frequency analysis of the occurrence of words in the text corpus was calculated. The results found that the most frequent words included: library, information, university, librarian, book, professional, science, research, paper, question, answer, and management. This shows that the LIS professionals actively discussed exams, research, and library operations on the forum of Lis Links. The study categorized the online discussions on Lis Links into ten topics, i.e. "LIS Recruitment," "LIS Issues," "Other Discussion," "LIS Education," "LIS Research," "LIS Exams," "General Information related to Library," "LIS Admission," "Library and Professional Activities," and "Information Communication Technology (ICT)." It was found that the majority of the posts belonged to "LIS Exam," followed by "Other Discussions" and "General Information related to the Library."

Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R (빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1199-1205
    • /
    • 2021
  • In the era of big data, not only structured data well organized in databases, but also the Internet, social network services, it is very important to effectively analyze unstructured big data such as web documents, e-mails, and social data generated in real time in mobile environment. Big data analysis is the process of creating new value by discovering meaningful new correlations, patterns, and trends in big data stored in data storage. We intend to summarize and visualize the analysis results through frequency analysis of unstructured article data using R language, a big data analysis tool. The data used in this study was analyzed for total 104 papers in the Mon-May 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 1,538 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

Analysis on the Usage of Internet Games for Children with Decision Tree Rules (의사결정규칙을 이용한 아동의 교육용 인터넷 게임 활용실태 분석)

  • Kim, Yong-Dae;Jung, Hui-Suk;Choi, Eun-Jeong;Park, Byung-Sun;Han, Jeong-Hye
    • Journal of The Korean Association of Information Education
    • /
    • v.5 no.3
    • /
    • pp.389-400
    • /
    • 2001
  • The Internet Game is widespreaded quickly on web, and there are many kinds of funny games for users to use easily, so that can be applied to ICT(Information Communication Technology)education. In this paper, we provide the analysis on the usage of Internet games for children and teachers that is conducted by the decision tree algorithm, which is one of the popular data mining techniques. The results show the pattern of children's and teachers' usages of Internet games.

  • PDF

Predicting Factors on the Increase in Computer Entertainment Behavior with Data Mining (데이터마이닝을 이용한 컴퓨터 오락추구 행동 상승의 예측요인)

  • Lee, Hyejoo;Jung, Euihyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2017
  • The purpose of this study is to investigate the predicting factors on the increase in computer entertainment behavior with the sample from KYPS data. The results of the Decision Tree model revealed that: (1) Neighbor supervision, self-belief, parent attachment, life satisfaction, and peer attachment were significant for the increase in computer entertainment behavior. (2) Neighbor supervision, class participation and leisure satisfaction were significant for male students' increase in computer entertainment behavior. (3) Optimistic disposition, teacher attachment, and peer attachment were significant for female students' increase in computer entertainment behavior. These results suggest that meaningful factors and their divers interactions should be considered in methods and programs for regulating and preventing the increase in computer entertainment behavior.