• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.023 seconds

Data Mining Technology for Efficient Information Application (교육에서의 효율적인 정보 활용을 위한 데이터 마이닝 기법)

  • Lee, Chul-Hwan;Han, Sun-Gwan
    • Journal of The Korean Association of Information Education
    • /
    • v.3 no.1
    • /
    • pp.75-85
    • /
    • 1999
  • The purpose of the paper is to apply a Data Mining method to Data Base System for more efficient educational data used in elementary and secondary education. First, this study investigated the whole contents of Data Mining and technique relation to Machine Learning. Mainly Data Base Systems in education are general life checking, record of health, and score reports. We suggested Data Mining method and Machine Learning when we search for information of usefulness in a particular representational form or a set of such representations in data. Also, we propose the problem and the solution when using data mining techniques in education.

  • PDF

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

A Better Prediction for Higher Education Performance using the Decision Tree

  • Hilal, Anwar;Zamani, Abu Sarwar;Ahmad, Sultan;Rizwanullah, Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.209-213
    • /
    • 2021
  • Data mining is the application of specific algorithms for extracting patterns from data and KDD is the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, other massive information repositories or data streams. Data mining can be used for decision making in educational system. But educational institution does not use any knowledge discovery process approach on these data; this knowledge can be used to increase the quality of education. The problem was happening in the educational management system, but to make education system more flexible and discover knowledge from it huge data, we will use data mining techniques to solve problem.

A Study on Educational Data Mining for Public Data Portal through Topic Modeling Method with Latent Dirichlet Allocation (LDA기반 토픽모델링을 활용한 공공데이터 기반의 교육용 데이터마이닝 연구)

  • Seungki Shin
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.439-448
    • /
    • 2022
  • This study aims to search for education-related datasets provided by public data portals and examine what data types are constructed through classification using topic modeling methods. Regarding the data of the public data portal, 3,072 cases of file data in the education field were collected based on the classification system. Text mining analysis was performed using the LDA-based topic modeling method with stopword processing and data pre-processing for each dataset. Program information and student-supporting notifications were usually provided in the pre-classified dataset for education from the data portal. On the other hand, the characteristics of educational programs and supporting information for the disabled, parents, the elderly, and children through the perspective of lifelong education were generally indicated in the dataset collected by searching for education. The results of data analysis through this study show that providing sufficient educational information through the public data portal would be better to help the students' data science-based decision-making and problem-solving skills.

Learning process mining techniques based on open education platforms (개방형 e-Learning 플랫폼 기반 학습 프로세스 마이닝 기술)

  • Kim, Hyun-ah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.375-380
    • /
    • 2019
  • In this paper, we study learning process mining and analytic technology based on open education platform. A study on mining through personal learning history log data based on an open education platform such as MOOC which is growing in interest recently. This technology is to design and implement a learning process mining framework for discovering and analyzing meaningful learning processes and knowledge from learning history log data. Learning process mining framework technology is a technique for expressing, extracting, analyzing and visualizing the learning process to provide learners with improved learning processes and educational services.

The Frequency Analysis of Teacher's Emotional Response in Mathematics Class (수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석)

  • Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.555-573
    • /
    • 2018
  • The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.

Analysis of trends in mathematics education research using text mining (토픽 모델링 분석을 통한 수학교육 연구 주제 분석)

  • Jin, Mireu;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.275-294
    • /
    • 2019
  • In order to understand the recent trends in mathematics education research papers, data mining method was applied to analyze journals of the mathematics education posterior to the year of 2016. Text mining method is useful in the sense that it utilizes statistical approach to understand the linkages and influencing relationship between concepts and deriving the meaning that data shows by visualizing the process. Therefore, this research analyzed the key words largely mentioned in the recent mathematics education journals. Also the correlation between the subjects of mathematics education was deduced by using topic modeling. By using the trend analysis tool it is possible to understand the vital point which researchers consider it as important in recent mathematics education area and at the same time we tried to use it as a fundamental data to decide the upcoming research topic that is worth noticing.

Study Factors for Student Performance Applying Data Mining Regression Model Approach

  • Khan, Shakir
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.188-192
    • /
    • 2021
  • In this paper, we apply data mining techniques and machine learning algorithms using R software, which is used to predict, here we applied a regression model to test some factor on the dataset for which we assumed that it effects student performance. Model was built on an existing dataset which contains many factors and the final grades. The factors tested are the attention to higher education, absences, study time, parent's education level, parent's jobs, and the number of failures in the past. The result shows that only study time and absences can affect the students' performance. Prediction of student academic performance helps instructors develop a good understanding of how well or how poorly the students in their classes will perform, so instructors can take proactive measures to improve student learning. This paper also focuses on how the prediction algorithm can be used to identify the most important attributes in a student's data.

The Construction of Engineering Educational Statistics System in Korea (국내 공학 교육통계 시스템 구축)

  • An, Hye Jeong;Kim, Ji Hyeon;Hong, Sung-Jo
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Along with the industry growth, engineering colleges in Korea has have a quantitative growth. Many of the policy promotions and budgets for engineering colleges from the government are supported. And the various monitoring methods to verify their achievement have demanded. This paper deals with the construction of engineering educational statistics system in Korea. It named Korea Engineering Data Management System(K-EDMS). This system is based on the data mining tool and supports data-based decision making for an advanced engineering education service. This paper presents related researches of case studies. Then, we have designed K-EDMS, and constructed 157 cases for engineering colleges of the year 2014.

Association Rule Mining and Collaborative Filtering-Based Recommendation for Improving University Graduate Attributes

  • Sheta, Osama E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.339-345
    • /
    • 2022
  • Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.