• 제목/요약/키워드: Education Data Mining

검색결과 268건 처리시간 0.02초

교육에서의 효율적인 정보 활용을 위한 데이터 마이닝 기법 (Data Mining Technology for Efficient Information Application)

  • 이철환;한선관
    • 정보교육학회논문지
    • /
    • 제3권1호
    • /
    • pp.75-85
    • /
    • 1999
  • 본 연구는 초 중등교육에서 사용되고 있는 데이터 베이스 시스템에 데이터 마이닝 기법을 적용하여 보다 효율적인 교육자료로 활용하기 위한 방안 제시에 그 목적이 있다. 데이터 마이닝에 대한 전반적인 내용과 기계학습과 관련된 내용을 고찰하였다. 교육에서 많이 사용되는 데이터베이스 시스템으로 종합생활기록과 건강 기록, 성적 자료가 있으며, 이러한 자료에서 나타난 특별한 형식과 집합을 데이터 마이닝 기법과 기계학습을 이용하여 유용한 정보를 추출하는 방법에 대해 제시하였다. 그리고 이러한 데이터 마이닝 기술을 사용함에 있어 교육 현장에서 문제가 되는 점과 이를 해결하기 위한 방안을 제안하였다.

  • PDF

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

A Better Prediction for Higher Education Performance using the Decision Tree

  • Hilal, Anwar;Zamani, Abu Sarwar;Ahmad, Sultan;Rizwanullah, Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.209-213
    • /
    • 2021
  • Data mining is the application of specific algorithms for extracting patterns from data and KDD is the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, other massive information repositories or data streams. Data mining can be used for decision making in educational system. But educational institution does not use any knowledge discovery process approach on these data; this knowledge can be used to increase the quality of education. The problem was happening in the educational management system, but to make education system more flexible and discover knowledge from it huge data, we will use data mining techniques to solve problem.

LDA기반 토픽모델링을 활용한 공공데이터 기반의 교육용 데이터마이닝 연구 (A Study on Educational Data Mining for Public Data Portal through Topic Modeling Method with Latent Dirichlet Allocation)

  • 신승기
    • 정보교육학회논문지
    • /
    • 제26권5호
    • /
    • pp.439-448
    • /
    • 2022
  • 본 연구에서는 공공데이터포털에서 제공하는 교육관련 데이터를 검색하고 토픽모델링 기법을 활용한 분류를 통해 어떠한 데이터의 종류가 구축되어 있으며 활용이 가능한지를 살펴보고자 하였다. 공공데이터포털의 데이터에 대하여 분류체계를 기준으로 교육분야의 파일데이터는 3,072건이 수집되었으며, 검색어를 활용하여 '교육'을 검색하여 나타난 파일데이터 2,361건으로 나타났다. 각각의 데이터셋에 대하여 불용어처리를 실시하고 데이터 전처리를 수행하여 LDA기반 토픽모델링을 활용하여 텍스트마이닝 분석을 실시하였다. 사전에 교육으로 분류된 데이터셋에서는 현재 재학중인 학교급별 학생을 대상으로 지원하는 프로그램과 정보에 대한 내용이 제공되고 있었다. 한편, 교육으로 검색하여 수집된 데이터셋에서는 장애인, 학부모, 노인, 아동 등 평생교육의 관점으로 제공되는 교육 프로그램 및 지원현황이라는 특징이 나타났다. 데이터과학기반의 의사결정 및 문제해결력을 기르기 위해 공공데이터포털이 제공하는 데이터에서 교육과정 및 내용이 충분히 제공되는 것도 좋은 기회가 될 것이다.

개방형 e-Learning 플랫폼 기반 학습 프로세스 마이닝 기술 (Learning process mining techniques based on open education platforms)

  • 김현아
    • 문화기술의 융합
    • /
    • 제5권2호
    • /
    • pp.375-380
    • /
    • 2019
  • 본 논문의 핵심 주제는 개방형 교육 플랫폼 기반 학습 프로세스 마이닝 및 애널리틱스 기술로 최근에 관심과 사용이 급속히 증가하고 있는 MOOC(Massive Open Online Courseware) 등과 같은 개방형 교육 플랫폼을 기반으로 하는 개인별 학습 이력 로그로부터 학습 및 러닝 프로세스를 중심으로 하는 유의미한 학습 프로세스 지식을 발견하고 분석하기 위한 학습 프로세스 마이닝 프레임워크를 설계 및 구현하는 기술이다. 러한 프레임워크의 핵심 기술로서, 학습 프로세스의 표현, 추출, 분석, 가시화하는 기술과 이러한 마이닝 및 분석된 학습 프로세스 지식으로부터 개선된 학습 프로세스 관련 교육 서비스를 제공하는 기술로 구성된다.

수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석 (The Frequency Analysis of Teacher's Emotional Response in Mathematics Class)

  • 손복은;고호경
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제32권4호
    • /
    • pp.555-573
    • /
    • 2018
  • 본 연구는 텍스트 마이닝 기법을 활용하여 수학수업에서 나타나는 교사의 감성적 언어를 확인하고자 하였다. 이를 위해 우수 수업 동영상을 활용하여 수업에서 발생하는 교사의 수업 언어 데이터를 수집하였다. 추출한 비정형 데이터에 대한 분석 과정은 데이터 수집, 데이터 전처리, 텍스트 마이닝 분석의 세 가지 단계로 진행하였다. 분석 결과 수학 수업에서 오고가는 담화 중에서 교사의 감성적 반응을 나타내는 언어는 거의 나타나지 않았으며, 이를 통해 수업의 정의적 영역 측면에서의 시사점을 도출하였다.

토픽 모델링 분석을 통한 수학교육 연구 주제 분석 (Analysis of trends in mathematics education research using text mining)

  • 진미르;고호경
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제33권3호
    • /
    • pp.275-294
    • /
    • 2019
  • 본 연구는 최근 수학교육 연구 논문들의 연구 동향을 파악하기 위하여 2016년 이후의 수학교육 학술지 논문들을 대상으로 텍스트마이닝 기법 중 토픽 모델링과 트랜드 분석 기법을 활용하여 분석을 실시하였다. 분석 결과 빈도수가 높은 단어들을 조합하여 5개의 토픽을 추출하였으며 이를 통해 최근 활발히 이루어지고 있는 수학교육 연구 주제들을 파악할 수 있었다. 이는 다시 기 수행된 동향 연구들과 차이점과 유사한 점들을 도출할 수 있었는데, 이와 같은 동향 분석을 통해 최근 연구자들이 수학교육 연구에서 중요시 여기는 관점을 읽어 나감과 동시에 향후 주목하여야할 연구 주제 및 방향에 대한 시사점을 제공한다.

Study Factors for Student Performance Applying Data Mining Regression Model Approach

  • Khan, Shakir
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.188-192
    • /
    • 2021
  • In this paper, we apply data mining techniques and machine learning algorithms using R software, which is used to predict, here we applied a regression model to test some factor on the dataset for which we assumed that it effects student performance. Model was built on an existing dataset which contains many factors and the final grades. The factors tested are the attention to higher education, absences, study time, parent's education level, parent's jobs, and the number of failures in the past. The result shows that only study time and absences can affect the students' performance. Prediction of student academic performance helps instructors develop a good understanding of how well or how poorly the students in their classes will perform, so instructors can take proactive measures to improve student learning. This paper also focuses on how the prediction algorithm can be used to identify the most important attributes in a student's data.

국내 공학 교육통계 시스템 구축 (The Construction of Engineering Educational Statistics System in Korea)

  • 안혜정;김지현;홍성조
    • 공학교육연구
    • /
    • 제19권2호
    • /
    • pp.53-59
    • /
    • 2016
  • Along with the industry growth, engineering colleges in Korea has have a quantitative growth. Many of the policy promotions and budgets for engineering colleges from the government are supported. And the various monitoring methods to verify their achievement have demanded. This paper deals with the construction of engineering educational statistics system in Korea. It named Korea Engineering Data Management System(K-EDMS). This system is based on the data mining tool and supports data-based decision making for an advanced engineering education service. This paper presents related researches of case studies. Then, we have designed K-EDMS, and constructed 157 cases for engineering colleges of the year 2014.

Association Rule Mining and Collaborative Filtering-Based Recommendation for Improving University Graduate Attributes

  • Sheta, Osama E.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.339-345
    • /
    • 2022
  • Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.