• Title/Summary/Keyword: Edge-Cloud Systems

Search Result 71, Processing Time 0.02 seconds

IoT Edge Architecture Model to Prevent Blockchain-Based Security Threats (블록체인 기반의 보안 위협을 예방할 수 있는 IoT 엣지 아키텍처 모델)

  • Yoon-Su Jeong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • Over the past few years, IoT edges have begun to emerge based on new low-latency communication protocols such as 5G. However, IoT edges, despite their enormous advantages, pose new complementary threats, requiring new security solutions to address them. In this paper, we propose a cloud environment-based IoT edge architecture model that complements IoT systems. The proposed model acts on machine learning to prevent security threats in advance with network traffic data extracted from IoT edge devices. In addition, the proposed model ensures load and security in the access network (edge) by allocating some of the security data at the local node. The proposed model further reduces the load on the access network (edge) and secures the vulnerable part by allocating some functions of data processing and management to the local node among IoT edge environments. The proposed model virtualizes various IoT functions as a name service, and deploys hardware functions and sufficient computational resources to local nodes as needed.

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).

A Study on RFID System Based on Cloud (클라우드 기반 RFID 시스템에 관한 연구)

  • Lee, Cheol-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1145-1150
    • /
    • 2020
  • After the Davos Forum, the recent 4th Industrial Revolution has become an area of interest to countries around the world. Among the technologies of the 4th industrial revolution, the ubiquitous computing environment requires a convergence environment of various devices, networks, and software technologies, and the RFID technology that identifies objects among the IoT technology fields is applied to all industries and has a competitive edge. Systems to which RFID technology is applied are being used in various industrial fields, especially! It is efficiently used for accurate inventory management and SCM management in the field of distribution and logistics. If the RFID system is built in a cloud-based environment, it will be possible to secure reliability in distribution management in consideration of an effective logistics management system and economic feasibility. This study is a study on the RFID system in a cloud computing environment to reduce the cost of operating or maintaining an application server to improve the economy and reliability.

Comparison of Search Performance of SQLite3 Database by Linux File Systems (Linux File Systems에 따른 SQLite3 데이터베이스의 검색 성능 비교)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Recently, IoT sensors are often used to produce stream data locally and they are provided for edge computing applications. Mass-produced data are stored in the mobile device's database for real-time processing and then synchronized with the server when needed. Many mobile databases are developed to support those applications. They are CloudScape, DB2 Everyplace, ASA, PointBase Mobile, etc, and the most widely used database is SQLite3 on Linux. In this paper, we focused on the performance required for synchronization with the server. The search performance required to retrieve SQLite3 was compared and analyzed according to the type of each Linux file system in which the database is stored. Thus, performance differences were checked for each file system according to various search query types, and criteria for applying the more appropriate Linux file system according to the index use environment and table scan environment were prepared and presented.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

The Characteristics and Predictability of Convective System Based on GOES-9 Observations during the Summer of 2004 over East Asia (정지기상위성의 밝기온도로 분석한 2004년 동아시아지역에서 발생한 여름철 대류 시스템의 특성과 그 예측 가능성)

  • Baek, Seon-Kyun;Choi, Young-Jean;Chung, Chu-Yong;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.225-234
    • /
    • 2006
  • Convective systems propagate eastward with a persistent pattern in the longitude-time space. The characteristic structure and fluctuation of convective system is helpful in determining its predictability. In this study, convective index (CI) was defined as a difference between GOES-9 window and water vapor channel brightness temperatures following Mosher (2001). Then the temporal-spatial scales and variational characteristics of the summer convective systems in the East Asia were analyzed. It is found that the average moving speed of the convective system is about 14 m/s which is much faster than the low pressure system in the summer. Their average duration is about 12 hours and the average length of the cloud streak is about 750km. These characteristics are consistent with results from other studies. Although the convective systems are forced by the synoptic system and are mostly developed in the eastern edge of the Tibetan Plateau, they have a persistent pattern, i.e., appearance of the maximum intensity of convective systems, as they approach the Korean Peninsula. The consistency of the convective systems, i.e., the eastward propagation, suggests that there exists an intrinsic predictability.

Functional Privacy-preserving Outsourcing Scheme with Computation Verifiability in Fog Computing

  • Tang, Wenyi;Qin, Bo;Li, Yanan;Wu, Qianhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.281-298
    • /
    • 2020
  • Fog computing has become a popular concept in the application of internet of things (IoT). With the superiority in better service providing, the edge cloud has become an attractive solution to IoT networks. The data outsourcing scheme of IoT devices demands privacy protection as well as computation verification since the lightweight devices not only outsource their data but also their computation. Existing solutions mainly deal with the operations over encrypted data, but cannot support the computation verification in the same time. In this paper, we propose a data outsourcing scheme based on an encrypted database system with linear computation as well as efficient query ability, and enhance the interlayer program in the original system with homomorphic message authenticators so that the system could perform computational verifying. The tools we use to construct our scheme have been proven secure and valid. With our scheme, the system could check if the cloud provides the correct service as the system asks. The experiment also shows that our scheme could be as effective as the original version, and the extra load in time is neglectable.

Comprehensive Survey on Internet of Things, Architecture, Security Aspects, Applications, Related Technologies, Economic Perspective, and Future Directions

  • Gafurov, Khusanbek;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.797-819
    • /
    • 2019
  • Internet of Things (IoT) is the paradigm of network of Internet-connected things as objects that constantly sense the physical world and share the data for further processing. At the core of IoT lies the early technology of radio frequency identification (RFID), which provides accurate location tracking of real-world objects. With its small size and convenience, RFID tags can be attached to everyday items such as books, clothes, furniture and the like as well as to animals, plants, and even humans. This phenomenon is the beginning of new applications and services for the industry and consumer market. IoT is regarded as a fourth industrial revolution because of its massive coverage of services around the world from smart homes to artificial intelligence-enabled smart driving cars, Internet-enabled medical equipment, etc. It is estimated that there will be several dozens of billions of IoT devices ready and operating until 2020 around the world. Despite the growing statistics, however, IoT has security vulnerabilities that must be addressed appropriately to avoid causing damage in the future. As such, we mention some fields of study as a future topic at the end of the survey. Consequently, in this comprehensive survey of IoT, we will cover the architecture of IoT with various layered models, security characteristics, potential applications, and related supporting technologies of IoT such as 5G, MEC, cloud, WSN, etc., including the economic perspective of IoT and its future directions.

Design of Portable Intelligent Surveillance System based on Edge Cloud and Micro Cloud (에지 클라우드 및 마이크로 클라우드 기반의 이동형 지능 영상감시 시스템 설계)

  • Park, Sun;Cha, ByungRae;Kim, JongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.556-557
    • /
    • 2019
  • The current video surveillance system is the third generation, and the video device has developed from low image quality to high image quality. The video surveillance solution has improved from the simple type to the intelligent type. However, as the equipment and technology for these video surveillance systems become more complicated and diversified, they are increasingly dependent on infrastructure, such as faster network speed and stable power supply. On the other hand, there is a growing need for video surveillance in areas where basic infrastructure is limited, such as power and communications. In this paper, we propose a system that can support intelligent video surveillance in a region where basic infrastructure is limited.

  • PDF