• Title/Summary/Keyword: Edge detection

Search Result 1,458, Processing Time 0.031 seconds

Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments (엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현)

  • Bae, Ju-Won;Han, Byung-Gil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

A Study on Edge Detection using Modified Histogram Equalization (변형된 히스토그램 평활화를 적용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1221-1227
    • /
    • 2015
  • Edge detection is one of the important technologies to simplify images in the text, lane and object recognition implementation process, and various studies are actively carried out at home and abroad. Existing edge detection methods include a method to detect edge by applying directional gradient masks in spatial space, and a mathematical morphology-based edge detection method. These existing detection methods show insufficient edge detection results in excessively dark or bright images. In this regard, to complement these drawbacks, we proposed an algorithm using the Sobel and histogram equalization among the existing methods.

A Study on Algorithm of Edge Detection in Mixed Noise Environments (복합잡음 환경에서 에지 검출에 관한 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.100-103
    • /
    • 2014
  • Currently, edge detection is utilized in various areas. Edge detection is the preprocessing process for image processing in general, and this is a technology that is considered essential for image processing. According, research on this subject is carried out incessantly. Edge has important image related elements such as size, direction and location of the object of an image. Numerous methods were proposed for the detection. Among them, the representative methods are Sobel, Prewitt, Roberts, Laplacian. However, these existing methods are rather lacking when it comes to the edge detection characteristics in case of the image with mixed noise. Therefore, this study presented edge detection method that utilizes median and average values for the elements depending on the size and location of local mask.

  • PDF

An Algorithm on Edge Detection using Local Mask in Salt & Pepper Noise Environments (Salt & Pepper 잡음 환경에서 국부 마스크를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.787-789
    • /
    • 2014
  • Image processing is presently used in various areas such as smart phone, smart TV, and portable PC. Likewise, edge detection plays an important role in most of the applications. As such, studies for the detection of edge are continually underway. Roberts, Laplacian and LoG(lapacian of Gaussian) are the representative edge detection methods, but these methods do not offer optimal edge detection characteristic in case of the image that is damaged by Salt & Pepper noises. As such, this study presented algorithm with superior edge detection characteristic by utilizing the elements of local mask in Salt & Pepper noise environment.

  • PDF

Intrusion Detection for IoT Traffic in Edge Cloud (에지 클라우드 환경에서 사물인터넷 트래픽 침입 탐지)

  • Shin, Kwang-Seong;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.138-140
    • /
    • 2020
  • As the IoT is applied to home and industrial networks, data generated by the IoT is being processed at the cloud edge. Intrusion detection function is very important because it can be operated by invading IoT devices through the cloud edge. Data delivered to the edge network in the cloud environment is traffic at the application layer. In order to determine the intrusion of the packet transmitted to the IoT, the intrusion should be detected at the application layer. This paper proposes the intrusion detection function at the application layer excluding normal traffic from IoT intrusion detection function. As the proposed method, we obtained the intrusion detection result by decision tree method and explained the detection result for each feature.

Simple Fuzzy Rule Based Edge Detection

  • Verma, O.P.;Jain, Veni;Gumber, Rajni
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.575-591
    • /
    • 2013
  • Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.

A Maximum Likelihood Approach to Edge Detection (Maximum Likelihood 기법을 이용한 Edge 검출)

  • Cho, Moon;Park, Rae-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.1
    • /
    • pp.73-84
    • /
    • 1986
  • A statistical method is proposed which estimates an edge that is one of the basic features in image understanding. The conventional edge detection techniques are performed well for a deterministic singnal, but are not satisfactory for a statistical signal. In this paper, we use the likelihood function which takes account of the statistical property of a signal, and derive the decision function from it. We propose the maximum likelihood edge detection technique which estimates an edge point which maximizes the decision function mentioned above. We apply this technique to statistecal signals which are generated by using the random number generator. Simnulations show that the statistical edge detection technique gives satisfactory results. This technique is extended to the two-dimensional image and edges are found with a good accuracy.

  • PDF

An effective edge detection method for noise images based on linear model and standard deviation (선형모형과 표준편차에 기반한 잡음영상에 효과적인 에지 검출 방법)

  • Park, Youngho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.813-821
    • /
    • 2020
  • Recently, research using unstructured data such as images and videos has been actively conducted in various fields. Edge detection is one of the most useful image enhancement techniques to improve the quality of the image process. However, it is very difficult to perform edge detection in noise images because the edges and noise having high frequency components. This paper uses a linear model and standard deviation as an effective edge detection method for noise images. The edge is detected by the difference between the standard deviation of the pixels included in the pixel block and the standard deviation of the residual obtained by fitting the linear model. The results of edge detection are compared with the results of the Sobel edge detector. In the original image, the Sobel edge detection result and the proposed edge detection result are similar. Proposed method was confirmed that the edge with reduced noise was detected in the various levels of noise images.

Edge Detection Using Simulated Annealing Algorithm (Simulated Annealing 알고리즘을 이용한 에지추출)

  • Park, J.S.;Kim, S.G.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.60-67
    • /
    • 1998
  • Edge detection is the first step and very important step in image analysis. We cast edge detection as a problem in cost minimization. This is achieved by the formulation of a cost function that evaluates the quality of edge configurations. The cost function can be used as a basis for comparing the performances of different detectors. This cost function is made of desirable characteristics of edges such as thickness, continuity, length, region dissimilarity. And we use a simulated annealing algorithm for minimum of cost function. Simulated annealing are a class of adaptive search techniques that have been intensively studied in recent years. We present five strategies for generating candidate states. Experimental results(building image and test image) which verify the usefulness of our simulated annealing approach to edge detection are better than other operator.

  • PDF