• 제목/요약/키워드: Edge clustering

검색결과 100건 처리시간 0.029초

컴퓨터 비젼을 이용한 파이프 검사시스템에 대한 연구 (A Study about Pipe inspection System for Computer Vision)

  • 박찬호;이병룡;양순용;안경관;오현옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.521-525
    • /
    • 2002
  • In this paper, a computer-vision based pipe-inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation for line detection. The dimension of inner and outer radius of pipe is calculated by proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle, by which pipes with wrong end-shape can be classified removed.

  • PDF

경사조사(傾斜照射) 강판튜브 방사선영상 영역특성 분석 (Discrimination for Line-clustering Segmental Approach to Steel-tube X-ray Image)

  • 황중원;황재호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.399-400
    • /
    • 2007
  • This paper proposes an regional analytic approach in image data space for radiographic image. Image is segmented into four regions, such as background, thickness, weld area and tube area, due to directional properties. Each region has its own gray level distribution, contrast range and noise property, originated from X-ray project mechanism and electric control system itself. Projection incorrectness and noise influence included on imaging quality is analyzed functionally and statistically. The experimental results shows not only segmental effects, but also visual edge evaluation.

  • PDF

MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색 (Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine))

  • 심정희;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

저고도 원격탐사 영상 분석을 통한 수륙경계선 추출 (Extraction of Waterline Using Low Altitude Remote Sensing)

  • 정다운;이종석;백지연;조영헌
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.337-349
    • /
    • 2020
  • 본 연구에서는 저고도 원격탐사 기구인 Helikite를 이용하여 연안지역의 영상을 획득하였다. 그리고 획득된 영상에서 4 종류의 영역 분할 알고리즘을 이용하여 육지와 수괴의 영역을 분할해 낸 후 경계 검출법을 이용해 수륙경계선을 추출하였다. 실측데이터의 부재로 정량적인 비교는 불가능했으나, 수괴와 육지의 구분이 비교적 명확한 적외선(Infrared band) 영역의 영상을 기준으로 각 알고리즘들에 의해 추출된 수륙경계선을 비교하였다. 그 결과, 영상에서 수괴와 육지의 구분이 모호한 부분에서 각각의 알고리즘의 결과가 크게 차이가 나는 것을 발견할 수 있었다. 이는 각 알고리즘이 영역을 구분하는데 사용되는 영상의 수치값(Digital number)의 임계치를 선정하는 과정에서 생긴 차이라고 판단된다. 이와 같이 다양한 알고리즘을 통한 수륙경계선의 추출은 향후 연속 모니터링이 가능한 자동 관측시스템과 함께 활용하여 고정지역에서 얻은 수년의 장기간의 데이터를 통해 연안 지역 형태의 급격한 변화를 설명하는데 도움을 줄 것으로 기대된다.

Automatic detection of discontinuity trace maps: A study of image processing techniques in building stone mines

  • Mojtaba Taghizadeh;Reza Khalou Kakaee;Hossein Mirzaee Nasirabad;Farhan A. Alenizi
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.205-215
    • /
    • 2024
  • Manually mapping fractures in construction stone mines is challenging, time-consuming, and hazardous. In this method, there is no physical access to all points. In contrast, digital image processing offers a safe, cost-effective, and fast alternative, with the capability to map all joints. In this study, two methods of detecting the trace of discontinuities using image processing in construction stone mines are presented. To achieve this, we employ two modified Hough transform algorithms and the degree of neighborhood technique. Initially, we introduced a method for selecting the best edge detector and smoothing algorithms. Subsequently, the Canny detector and median smoother were identified as the most efficient tools. To trace discontinuities using the mentioned methods, common preprocessing steps were initially applied to the image. Following this, each of the two algorithms followed a distinct approach. The Hough transform algorithm was first applied to the image, and the traces were represented through line drawings. Subsequently, the Hough transform results were refined using fuzzy clustering and reduced clustering algorithms, along with a novel algorithm known as the farthest points' algorithm. Additionally, we developed another algorithm, the degree of neighborhood, tailored for detecting discontinuity traces in construction stones. After completing the common preprocessing steps, the thinning operation was performed on the target image, and the degree of neighborhood for lineament pixels was determined. Subsequently, short lines were removed, and the discontinuities were determined based on the degree of neighborhood. In the final step, we connected lines that were previously separated using the method to be described. The comparison of results demonstrates that image processing is a suitable tool for identifying rock mass discontinuity traces. Finally, a comparison of two images from different construction stone mines presented at the end of this study reveals that in images with fewer traces of discontinuities and a softer texture, both algorithms effectively detect the discontinuity traces.

칼라 문서에서 문자 영역 추출믹 문자분리 (The Character Area Extraction and the Character Segmentation on the Color Document)

  • 김의정
    • 한국지능시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.444-450
    • /
    • 1999
  • 본 논문에서는 칼라로 입력된 문서 영상에서 문자 영역추출을 위하여 k-means을 이용한 클러스트링 알고리즘을 제안하였다. 칼라 영상의 클러스트링을 위해서 HIS 좌표계에 적합한 거리함수를 제안하였다. 이를 인식하기 위한 전처리 단계인 문자분리(segmentation)방법은 연결 화소를 이용한 개별문자 추출 알고리즘을 제안하였다. 본 알고리즘 에서는 문자분리방벙에서 접촉문자 (touching character)또는 겹친 문자(overlapped character)등과 같이 분리가 곤란한 문자를 개별문자로 분리하는 방법이다. 기존의 문자 분리방법에서는 투영(projection)dop 의한 방법과 외곽선(edge)추적에 의한 방법등을 사용하여 왔으나 제안된 방법은 문자열 추출후 한번의 투영으로 연결화소를 이용하여 개별문자를 추출한다. 문자 영역과 비 문자 영역을 구분하여 개발문자 추출을 한 결과 단순한 이진 영상이 아닌 칼라 영상에서의 문서 처리가 큰 의의가 있고 기존의 문서 처리기 보다 향상된 알고리즘인 것을 확인하였다.

  • PDF

집합점의 신뢰성을 이용한 네트워크 자기상관 모델의 연구 (An Application of Network Autocorrelation Model Utilizing Nodal Reliability)

  • 김영호
    • 한국경제지리학회지
    • /
    • 제11권3호
    • /
    • pp.492-507
    • /
    • 2008
  • 일반적으로 사용되는 많은 네트워크 분석방법들은 비공간적인 측면에서 네트워크를 인식하는 경향이 있다. 가령 네트워크의 신뢰성(reliability)을 측정하고 중요한 집합점(node)을 찾는 기본적인 문제에 있어서도, 이러한 분석방법들은 집합점의 속성이나 연결선(edge)의 거리와 같은 네트워크의 공간적인 요소를 배제한 채, 네트워크요소들의 위상적인 접합 여부만을 고려한다. 그에 따라 이러한 네트워크 분석은 실제 공간에서의 네트워크 특성을 반영하지 못하는 제한적인 결과만을 도출하게 한다. 그러나 본 연구는 국지네트워크의 자기상관 (local network autocorrelation measure) 값을 이용하여 이러한 문제의 해결을 시도하였다. 국가자기상관 값은 공간객체들의 유사성이나 군집성을 개별적으로 측정하여 각 객체들의 중요도를 나타낸다. 본 연구는 미국의 주요 인터넷 네트워크를 disjoint product method와 Getis-Ord의 G 수치를 이용하여 분석하였으며 그 과정에서 인구와 신뢰도를 변수로서 이용하였다. 그 결과 국지네트워크의 자기상관값은 주요한 집합점들의 국지적인 군집정도를 나타냈고, 이러한 연구 결과는 연구 촛점이 국지네트워크의 범위나 그 영향일 경우, 국지자기상관값의 이용이 더 실용적이고 현실적임을 보여준다.

  • PDF

빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견 (Discovering Association Rules using Item Clustering on Frequent Pattern Network)

  • 오경진;정진국;하인애;조근식
    • 지능정보연구
    • /
    • 제14권1호
    • /
    • pp.1-17
    • /
    • 2008
  • 데이터 마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템(item) 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량의 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 많이 제안되어 왔다. 연관규칙을 발견하기 위한 기존의 연구들은 모든 규칙을 찾아내지만, 사람이 분석하기에 너무 많은 규칙이 생성되기 때문에 규칙을 분석하기 위한 일 또한 많은 과정을 거쳐야 한다. 본 논문에서는 빈발 패턴 네트워크(Frequent Pattern Network)라 부르는 자료 구조를 제안하고 이를 활용하였다. 네트워크는 정점과 간선으로 구성되며 정점은 아이템을 표현하고, 간선은 두 아이템 집합을 표현한다. 아이템의 빈도수를 이용하여 빈발 패턴 네트워크를 구성하고, 아이템 사이의 유사도를 측정한다. 그리고 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 클러스터를 생성한다. 클러스터를 이용해 연관규칙을 생성하고 실험을 통해 Apriori와 FP Growth 알고리즘과의 성능을 비교를 하였다. 그 결과 빈발 패턴 네트워크에서 신뢰도 유사도를 이용하는 것이 클러스터의 정확성을 높여줌을 볼 수 있었다. 그리고 전통적인 방법과 비교를 통해 빈발 패턴 네트워크를 이용하는 것이 최소지지도에 유연성을 가짐을 알 수 있었다.

  • PDF

Real-Time Pipe Fault Detection System Using Computer Vision

  • Kim Hyoung-Seok;Lee Byung-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.30-34
    • /
    • 2006
  • Recently, there has been an increasing demand for computer-vision-based inspection and/or measurement system as a part of factory automation equipment. In general, it is almost impossible to check the fault of all parts, coming from part-feeding system, with only manual inspection because of time limitation. Therefore, most of manual inspection is applied to specific samples, not all coming parts, and manual inspection neither guarantee consistent measuring accuracy nor decrease working time. Thus, in order to improve the measuring speed and accuracy of the inspection, a computer-aided measuring and analysis method is highly needed. In this paper, a computer-vision-based pipe inspection system is proposed, where the front and side-view profiles of three different kinds of pipes, coming from a forming line, are acquired by computer vision. And the edge detection is processed by using Laplace operator. To reduce the vision processing time, modified Hough transform is used with clustering method for straight line detection. And the center points and diameters of inner and outer circle are found to determine eccentricity of the parts. Also, an inspection system has been built so that the data and images of faulted parts are stored as files and transferred to the server.

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF