• Title/Summary/Keyword: Edge Shape

Search Result 887, Processing Time 0.026 seconds

AERODYNAMIC CHARACTERISTICS OF NACA64-418 AIRFOIL WITH BLUNT TRAILING EDGE ACCORDING TO THE SHAPE OF TRAILING EDGE (뒷전 두께를 갖는 NACA64-418 익형의 꼬리형상에 따른 공력특성)

  • Yoo, H.S.;Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.94-99
    • /
    • 2014
  • The aerodynamic performance of a modified NACA64-418 with blunt trailing edges of irregular shape was investigated. As the trailing edge of the airfoil was thickened, the drag of the airfoil was increased due to development of a re-circulation bubble in the wake region. To reduce the drag of the airfoil with a blunt trailing edge, the optimum shape of the trailing edge for a modified NACA64-418 was investigated. The numerical results showed that the drag of the protruding shape was much more decreased than that of the retreating shape, but the lift was almost the same regardless of shape. In addition, the pitching moment of the modified NACA64-418 with a protruding sharp trailing edge was the smallest at the given angle of attack.

The Detection of Rectangular Shape Objects Using Matching Schema

  • Ye, Soo-Young;Choi, Joon-Young;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.363-368
    • /
    • 2016
  • Rectangular shape detection plays an important role in many image recognition systems. However, it requires continued research for its improved performance. In this study, we propose a strong rectangular shape detection algorithm, which combines the canny edge and line detection algorithms based on the perpendicularity and parallelism of a rectangle. First, we use the canny edge detection algorithm in order to obtain an image edge map. We then find the edge of the contour by using the connected component and find each edge contour from the edge map by using a DP (douglas-peucker) algorithm, and convert the contour into a polyline segment by using a DP algorithm. Each of the segments is compared with each other to calculate parallelism, whether or not the segment intersects the perpendicularity intersecting corner necessary to detect the rectangular shape. Using the perpendicularity and the parallelism, the four best line segments are selected and whether a determined the rectangular shape about the combination. According to the result of the experiment, the proposed rectangular shape detection algorithm strongly showed the size, location, direction, and color of the various objects. In addition, the proposed algorithm is applied to the license plate detecting and it wants to show the strength of the results.

Improvement of the Flow Around Airfoil/Flat-Plate Junctures by Optimization of the Leading-Edge Shape (날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-265
    • /
    • 2009
  • The present study deals with the leading edge shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge is optimized with design variables form the leading-edge shape. Approximate optimization design method is used for the optimization. The study is investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. As the result, total pressure coefficient of the optimized design case was decreased about 9.79% compare to the baseline case.

  • PDF

Study of Edge Crack Growth According to Rolling Condition in Cold Rolling (냉간압연공정에서 공정변수에 따른 엣지 크랙 성장에 관한 연구)

  • Cui, X.Z.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The shape of edge cracking in rolling process generally occurred "V" shape. This cracking is successively generated at width edge of strip. The edge cracking is developed to center of strip during rolling process. In the results, the strip is occurred fracture, and the productivity is gone down because of the extensive production time. Accordingly, we need to control crack propagation during rolling process. But, the control of cracking is very difficult in rolling process. Previously the studies of edge cracking were mainly performed on hot rolling process. In this paper, the shape of the edge cracking in rolling was estimated according to process conditions such as initial edge crack size, reduction ratio and tension using FE-simulation and the simplicity experiments on cold rolling process.

Prediction and Design of Edge Shape of Initial Strip for Thick Tube Roll Forming using Finite Element Method (유한요소해석을 이용한 후육관 롤포밍에서의 초기소재 에지 형상 예측과 설계)

  • Kim, Nak-Su;Lee, Seung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.644-652
    • /
    • 2002
  • Increasing demands for Electric Resistance Welded pipes of high quality with thick wall require c lose investigations in edge deformation by slitting, strip deformation during break down farming, and difference of circumferential length. In order to obtain good quality of a welding zone, it is necessary to predict the edge shape of the initial strip. The modeling of the multi-pass thick tube roll forming process with rigid plastic finite element method ultra the edge shape prediction of an initial strip with 2nd-degree polynomial regression method are presented. Edge shapes of initial strip have been analyzed by the finite element method and designed by the regression method to satisfy the requirements in target fin pass. It is concluded that the proposed edge design method results in optimal edge shapes sat string the design requirements.

Prediction of the Edge Sealing Shape on the Vacuum Glazing Using the Nonlinear Regression Analysis (비선형회귀분석을 이용한 진공유리 모서리 접합단면 형상예측)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1016-1021
    • /
    • 2013
  • While using the hydrogen mixture gas torch, the glass edge sealing and the shape of the edge sealing parts is affected by many parameters such as flow rate of gas, traveling speed of torch, distance between glass and torch. As the glass edge sealing shape have effects on the insulation and airtightness and strength of the glass panel; the sealing shapes are predicted according to the process parameters. The paper highlight the nonlinear regression equations of the cross-sectional shape of the sealing shape according to the parameters, that is experimentally predicted later compared and verified the equation with the experimental result.

Effect of Leading Edge Shape on the Blade Surface Temperature of a Partial Admission Supersonic Turbine (부분입사형 초음속 터빈의 블레이드 표면 온도에 블레이드 앞전 형상이 미치는 영향)

  • Lee, Sang-Do;Kim, Kui-Soon;Lee, In-Chul;Koo, Ja-Yae;Mun, In-Sang;Lee, Su-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper, numerical analysis of the surface gas temperature on turbine blades has been performed to investigate the temperature profiles characteristics of a partial admission supersonic turbine driven by high temperature and pressure gas of pyro-starter with two different types of turbine blade edge shape. In order to examine the surface gas temperature on turbine blades at initial starting, computations tlave been carried out at several turbine rotational speeds in the range of $0{\sim}10,000$ rpm for each type of turbine edge shape. "Sharp" edge and "Round" edge types were taken as the turbine edge shape factor. As turbine rotational speed increased, the average temperature of turbine blades was further decreased. It was also found that the surface temperature of turbine blades with a sharp edge was lower than round-type edge turbine blades.

A study on Discharge Characteristics of Rotating Discharge Hole with inlet edge shape (입구 형상에 따른 회전 송출공의 송출특성 연구)

  • Kang, Se-Won;Ha, Kyung-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.746-752
    • /
    • 2000
  • A study on discharge characteristics of a rotating discharge hole is very important to enhance the performance of an induction motor which have external forced cooling system. The discharge characteristics of rotating discharge holes are influenced by rotating speed, length-to-diameter ratio, inlet shape of rotor holes, etc. An experimental study on the effect of chamfered inlet edge of rotor inlet part with various depth-to-diameter and inlet chamfered edge angle is conducted. Depth-to-diameter ratios range from 0 to 0.5 and inlet chamfered edge angle range from 0 to 60. As a result, there is an optimal design point of inlet chamfered edge depth. And the inlet edge angle far maximum discharge coefficient is influenced mainly by the rotating speed of discharge holes.

  • PDF

Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Blade Edge Shape (터빈 블레이드 회전수 변화와 터빈 블레이드 엣지 형상 변화에 따른 표면 가스온도 분포 해석)

  • Lee, In-Chul;Byun, Yong-Woo;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • The numerical analysis for gas temperature of turbine blade surface has been performed to investigate development of temperature with various blade edge shape. Two different types of the turbine which one is "Sharp" edge and the other is "Round" edge was modeled. Computations have been carried out several turbine rotational speeds in the range from 0 to 10,000 rpm for the each types of turbine edge shape. As a result, the more rotational speed of turbine increased, the more turbine blade's temperature decreased. It is also found that the surface temperature of turbine blades for sharp type edge were lower than the round type edge.

  • PDF

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.