• Title/Summary/Keyword: Edge Preserving

Search Result 152, Processing Time 0.028 seconds

Graph Visualization Using Genetic Algorithms of Preserving Distances between Vertices and Minimizing Edge Intersections (정점 간의 거리 보존 및 최소 간선 교차에 기반을 둔 유전 알고리즘을 이용한 그래프 시각화)

  • Kye, Ju-Sung;Kim, Yong-Hyuk;Kim, Woo-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.234-242
    • /
    • 2010
  • In this paper, we deal with the visualization of graphs, which are one of the most important data structures. As the size of a graph increases, it becomes more difficult to check the graph visually because of the increase of edge intersections. We propose a new method of overcoming such problem. Most of previous studies considered only the minimization of edge intersections, but we additionally pursue to preserve distances between vertices. We present a novel genetic algorithm using an evaluation function based on a weighted sum of two objectives. Our experiments could show effective visualization results.

Privacy Protection Method for Sensitive Weighted Edges in Social Networks

  • Gong, Weihua;Jin, Rong;Li, Yanjun;Yang, Lianghuai;Mei, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.540-557
    • /
    • 2021
  • Privacy vulnerability of social networks is one of the major concerns for social science research and business analysis. Most existing studies which mainly focus on un-weighted network graph, have designed various privacy models similar to k-anonymity to prevent data disclosure of vertex attributes or relationships, but they may be suffered from serious problems of huge information loss and significant modification of key properties of the network structure. Furthermore, there still lacks further considerations of privacy protection for important sensitive edges in weighted social networks. To address this problem, this paper proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the sensitive edges are differentiated from weighted edges according to the edge betweenness centrality, which evaluates the importance of entities in social network. Then, the perturbation operations are used to preserve the privacy of weighted social network by adding some pseudo-edges or modifying specific edge weights, so that the bottleneck problem of information flow can be well resolved in key area of the social network. Experimental results show that the proposed method can not only effectively preserve the sensitive edges with lower computation cost, but also maintain the stability of the network structures. Further, the capability of defending against malicious attacks to important sensitive edges has been greatly improved.

No-reference Sharpness Index for Scanning Electron Microscopy Images Based on Dark Channel Prior

  • Li, Qiaoyue;Li, Leida;Lu, Zhaolin;Zhou, Yu;Zhu, Hancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2529-2543
    • /
    • 2019
  • Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.

A Method of Coupling Expected Patch Log Likelihood and Guided Filtering for Image De-noising

  • Wang, Shunfeng;Xie, Jiacen;Zheng, Yuhui;Wang, Jin;Jiang, Tao
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.552-562
    • /
    • 2018
  • With the advent of the information society, image restoration technology has aroused considerable interest. Guided image filtering is more effective in suppressing noise in homogeneous regions, but its edge-preserving property is poor. As such, the critical part of guided filtering lies in the selection of the guided image. The result of the Expected Patch Log Likelihood (EPLL) method maintains a good structure, but it is easy to produce the ladder effect in homogeneous areas. According to the complementarity of EPLL with guided filtering, we propose a method of coupling EPLL and guided filtering for image de-noising. The EPLL model is adopted to construct the guided image for the guided filtering, which can provide better structural information for the guided filtering. Meanwhile, with the secondary smoothing of guided image filtering in image homogenization areas, we can improve the noise suppression effect in those areas while reducing the ladder effect brought about by the EPLL. The experimental results show that it not only retains the excellent performance of EPLL, but also produces better visual effects and a higher peak signal-to-noise ratio by adopting the proposed method.

Cone-beam Reconstruction using Limited EPID Projections for Seeds Localization (Seed의 위치 확인을 위한 제한된 EPID 영상을 이용한 콘빔 재구성)

  • Chang, Ji-Na;Jung, Won-Kyun;Park, Sung-Ho;Cheong, Kwang-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.186-190
    • /
    • 2008
  • In this study, we describe the preliminary application for the delineation of a metal object using cone-beam reconstruction (CBR) based on limited electronic portal imaging device (EPID) projections. A typical Feldkamp, Davis and Kress (FDK) reconstruction algorithm accompanying the edge preserving smoothing filter was used as only a few projections are acquired for reconstruction. In a correlation study of the projection numbers, we found that the size of the seeds and their location depicted by these CBR images were almost identical. Limited views were used for CBR, and our method is inexpensive and competitive for use in clinical applications.

  • PDF

Low Complexity Single Image Dehazing via Edge-Preserving Transmission Estimation and Pixel-Based JBDC (에지 보존 전달량 추정 및 픽셀 단위 JBDC를 통한 저 복잡도 단일 영상 안개 제거)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2019
  • This paper presents low-complexity single-image dehazing to enhance the visibility of outdoor images that are susceptible to degradation due to weather and environmental conditions, and applies it to various devices. The conventional methods involve refinement of coarse transmission with high computational complexity and extensive memory requirements. But the proposed transmission estimation method includes excellent edge-preserving performance from comparison of the pixel-based dark channel and the patch-based dark channel in the vicinity of edges, and transmission can be estimated with low complexity since no refinement is required. Moreover, it is possible to accurately estimate transmissions and adaptively remove haze according to the characteristics of the images via prediction of the atmospheric light for each pixel using joint bright and dark channel (JBDC). Comprehensive experiments on various hazy images show that the proposed method exhibits reduced computational complexity and excellent dehazing performance, compared to the existing methods; thus, it can be applied to various fields including real-time devices.

Efficient Single Image Dehazing by Pixel-based JBDCP and Low Complexity Transmission Estimation (저 복잡도 전달량 추정 및 픽셀 기반 JBDCP에 의한 효율적인 단일 영상 안개 제거 방법)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.977-984
    • /
    • 2019
  • This paper proposes a single image dehazing that utilizes the transmission estimation with low complexity and the pixel-based JBDCP (Joint Bright and Dark Channel Prior) for the effective application of hazy outdoor images. The conventional transmission estimation includes the refinement process with high computational complexity and memory requirements. We propose the transmission estimation using combination of pixel- and block-based dark channel information and it significantly reduces the complexity while preserving the edge information accurately. Moreover, it is possible to estimate the transmission reflecting the image characteristics, by obtaining a different air-light for each pixel position of the image using the pixel-based JBDCP. Experimental results on various hazy images illustrate that the proposed method exhibits excellent dehazing performance with low complexity compared to the conventional methods; thus, it can be applied in various fields including real-time devices.

Switching Filter for Preserving Edge Components in Random Impulse Noise Environments (랜덤 임펄스 잡음 환경에서 에지 성분을 보존하기 위한 스위칭 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.722-728
    • /
    • 2020
  • Digital image processing has been applied in a wide range of fields due to the development of IoT technology and plays an important role in data processing. Various techniques have been proposed to remove such noise, but the conventional impulse noise canceling methods are insufficient to remove noise of edge components of an image, and have a disadvantage of being greatly affected by random impulse noise. Therefore, in this paper, we propose an algorithm that effectively removes edge component noise in random impulse noise environment. The proposed algorithm calculates the threshold value by determining the noise level and switches the filtering process by comparing the reference value with the input pixel value. The proposed algorithm shows good performance in the existing method, and the simulation results show that the noise is effectively removed from the edge of the image.

A Study on Nonlinear Filter for Impulse Noise Removal (Impulse 노이즈 제거를 위한 새로운 비선형 필터에 관한 연구)

  • No, Hyun-Yong;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.981-984
    • /
    • 2005
  • Recently, filtering methods for attenuating noise while preserving image details are in progress actively. And SM(standard median) fille. showed a great performance for noise removal in impulse noise environment but, it caused edge cancellation error So, variable methods that modified SM(standard median)filter have been proposed, and CWM(center weighted median) filter is representative. Also, there are several methods to improve the efficiency based on min/max operation in term of preserving detail and filtering speed. In this paper, we managed a pixel corrupted by impulsive noise using min/max value of the surrounding band enclosing a pixel, and compared the efficiency with exiting methods in the simulation.

  • PDF

Performance Enhancement of Spline-based Edge Detection (스플라인 기법을 이용한 영상의 경계 검출 성능 개선)

  • 김영호;김진철;이완주;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2106-2115
    • /
    • 1994
  • As a pre processing for an edge detection process. edge preserving smoothing algorithm is proposed. For this purpose we used the interpolation method using B-spline basis function and scaling of digital images. By approximation of continuous function from descrete data using B-spline basis function. undetermined data between two sample can be computed. so that they smooth the surfaces of objects. Some edges having mainly low frequency components are detected using down scaling of the images. Edge maps from proposed pre processed images are hardly affected by the varying space constants($\sigma$) and threshold values used in detecting zero-crossing.

  • PDF