International Journal of Internet, Broadcasting and Communication
/
제14권3호
/
pp.22-29
/
2022
Recently, with the development of mobile computing power, mobile-based VR and AR services are being developed. Due to network performance and computing power constraints, VR and AR services using large-capacity 3D content have limitations. A study on an efficient 3D content load method for a mobile device is required. The conventional method downloads all 3D content used for AR services at the same time. In this paper, we propose an active 3D content load according to the user's track. The proposed method is a partitioned 3D object load. Edge servers were installed for each area and connected through the MESH network. Partitioned load the required 3D object in the area referring to the user's location. The location is identified through the edge server information of the connected AP. The performance of the proposed method and the conventional method was compared. As a result of the comparison, the proposed method showed a stable Mobile AR Service. The results of this study, it is expected to contribute to the activation of edge server-based AR mobile services.
본 논문은 FEC 환경에서 응용 서비스의 처리 지연시간 최소화를 위하여 선행연구 제안한 부분 오프로딩 시스템의 네트워크 부하에 따른 오프로딩의 효과를 분석한다. 모바일 장치와 FEC 서버 간의 2계층 협력 컴퓨팅 시스템으로 구성된 제안 시스템을 로컬 전용 및 에지 서버 전용 처리와 비교한다. 제안 시스템은 다중 분기구조의 재구성 선형화를 통한 부분 오프로딩 알고리즘[1]과 두 계층 간의 최적 협업 알고리즘[2]을 포함한다. 실험은 다중 분기구조의 DAG 토폴로지를 갖는 논리적 CNN 모델을 대상으로 계층 스케줄링을 적용하여 수행하였으며, 실험 결과 제안 시스템은 로컬이나 에지 전용 실행과 비교하여 항상 효율적인 작업 처리 전략 및 처리 지연시간을 제공함을 입증하였다.
차량 내부의 다양한 전자장치를 연결하는 차량 내 통신(IVN: in-vehicle network)은 실시간성, 저잡음성, 고신뢰성, 고유연성 등이 필요하며 CAN(controller area network), CAN-FD(CAN flexible data rate), FlexRay, LIN(local interconnect network), SENT(single edge nibble transmission), PSI5(peripheral sensor interface 5) 등 다양한 기술이 있다. 본 논문에서는 이들 기술의 동작 원리에 대해 살펴보고 각 기술의 적용 대상과 장단점에 대해 설명한다.
To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.
최근 네트워크 기술 동향에 있어서 이른바 핫 이슈 중 하나인 소프트웨어 정의 네트워킹(SDN, Software-Defined Networking)은 바야흐로 데이터센터, 기업, 캠퍼스 등의 근거리 데이터 네트워크(LAN, Local Area Network) 환경을 넘어서 통신망 사업자(캐리어)와 서비스 제공자를 통해 원거리 데이터 네트워크 (WAN, Wide Area Network)로 진화하고 있다. 본고에서는 종단간 SDN 프로덕션 서비스를 위한 소프트웨어 정의 원거리 네트워크(SD-WAN, Software-Defined WAN)의 개요 및 적용 사례를 소개하고, SD-WAN의 핵심 서비스 기술로 인식되고 있는 네트워크 최적화, 가상화, 자동화, SDX(Software-Defined Exchange) 등의 요소 기술과 연구 동향을 알아본다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권12호
/
pp.3364-3382
/
2023
Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.
5G 목표 중 하나인 초신뢰성 저지연 통신에 도달하기 위해 멀티액세스 엣지 컴퓨팅 패러다임이 탄생했다. 이 패러다임은 클라우드 컴퓨팅 기술을 네트워크 엣지에 더 가깝게 하며 서비스 지연 시간을 줄이기 위해서는 네트워크 엣지에 있는 여러 Edge Cloud에서 서비스 호스팅된다. 모바일 사용자의 경우 서비스 품질 유지를 위해 서비스를 가장 적합한 Edge Cloud로 마이그레이션하는 것은 중요하고 고이동성 시나리오에서는 서비스 마이그레이션 문제가 더욱 복잡해진다. 고정 이동 경로에서 사용자 이동성과 Edge Cloud 선택에 대한 어떤 영향을 미치는 건지 관찰하는 것이 이 연구의 목표다. Mobility-Aware Service Migration (MASM)은 고이동성 시나리오 동안 라우팅 비용과 서비스 마이그레이션 비용이라는 두 가지 주요 매개변수를 기반으로 서비스 마이그레이션을 최적화하기 위해 제안된다. 제안된 알고리즘을 기존의 그리디 알고리즘과 비교하여 평가한다.
Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권4호
/
pp.980-997
/
2024
To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.
Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.
본고에서는 5G 망에서의 서비스 요구사항을 만족하기 위한 구조로서 Network Slicing 구조를 제안하고 세부 적용방안을 기술한다. 이를 위해 5G 서비스를 우선 정의하고 그에 따른 서비스 요구사항을 도출한 후, 이러한 요구사항과 관련해 현재 망의 문제점에 대해 기술하고 망 개선을 위한 기술 요구사항을 정립한다. 특히, 5G에서의 중요성이 높아질 것으로 전망되고 있는 'Network Slicing'의 필요성 및 개념에 대해 서술한다. Network Slicing에 대한 제조사들의 솔루션 동향, 3GPP 등 단체의 표준화 동향, APN 방식의 P-LTE/DECOR/RAN Slicing 등 관련 기술의 발전 동향을 포함한 5G Network Slicing 주요 기술 동향에 대해서 알아본다. 또한, Slice의 관리 및 BSS/OSS등과의 연계를 위한 통신사업자 입장에서의 플랫폼 요구사항을 정리한다. 5G Network Slicing을 충족하기 위한 주요 기술로 C/U plane 분리구조, 범용 서버를 활용한 NFV/SDN, Edge 기반의 분산된 수평적 네트워크, 데이터 오프로딩 및 지연시간 절감을 위한 Edge Computing 등을 들 수 있고 효율적인 자원 관리를 위한 Orchestration 등에 대해서도 알아본다. 이를 기반으로 하여 사업자 입장에서 5G Core Network 기술을 선도함은 물론이고 향후, 조기 상용화를 위한 진화 방향을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.