• Title/Summary/Keyword: Edge Network

Search Result 781, Processing Time 0.024 seconds

Ultra-low-latency services in 5G systems: A perspective from 3GPP standards

  • Jun, Sunmi;Kang, Yoohwa;Kim, Jaeho;Kim, Changki
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.721-733
    • /
    • 2020
  • Recently, there is an increasing demand for ultra-low-latency (ULL) services such as factory automation, autonomous driving, and telesurgery that must meet an end-to-end latency of less than 10 ms. Fifth-generation (5G) New Radio guarantees 0.5 ms one-way latency, so the feasibility of ULL services is higher than in previous mobile communications. However, this feasibility ensures performance at the radio access network level and requires an innovative 5G network architecture for end-to-end ULL across the entire 5G system. Hence, we survey in detailed two the 3rd Generation Partnership Party (3GPP) standardization activities to ensure low latency at network level. 3GPP standardizes mobile edge computing (MEC), a low-latency solution at the edge network, in Release 15/16 and is standardizing time-sensitive communication in Release 16/17 for interworking 5G systems and IEEE 802.1 time-sensitive networking (TSN), a next-generation industry technology for ensuring low/deterministic latency. We developed a 5G system based on 3GPP Release 15 to support MEC with a potential sub-10 ms end-to-end latency in the edge network. In the near future, to provide ULL services in the external network of a 5G system, we suggest a 5G-IEEE TSN interworking system based on 3GPP Release 16/17 that meets an end-to-end latency of 2 ms.

Advanced LER to Improve Performance of IP over MPLS (IP기반 MPLS망의 성능향상을 위한 Advanced LER)

  • 박성진;김진무;이병호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.37-40
    • /
    • 2000
  • Multi Protocol Label Switching (MPLS) is a high performance method for forwarding packets (frames) through a network. It enables routers at the edge of a network to apply simple labels to packets (frames). we use MPLS in the core network for internet. MPLS provide high speed switching and traffic engineering in MPLS domain but at the Label Edge Router(LER) there is frequently cell discarding via congestion and buffer management method. It is one of the most important reasons retransmission and congestion. In this paper we propose advanced LER scheme that provide less cell loss rate also efficient network infrastructure.

  • PDF

Chaotic System Control Considering Edge of Chaos Using Neural Network

  • Obayashi, Masanao;Umesako, Kosuke;Nakayama, Daisuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.93.1-93
    • /
    • 2002
  • In this paper, an efficient robust control method for chaotic system introducing the concept, the edge of chaos (:boundary status between chaos and non-chaos), is proposed. To realize this concept, we introduce an extended performance index which consists of two parts. One is for achievement of the system's objects, another is for keeping the system edge of chaos. Parameters of the neural network controller are adjusted to minimize the value of the extended performance index and achieve the above two objects using Random...

  • PDF

Architecture of Multiple Ring based Optical Packet Network with Single Hop Between Edge Nodes (Edge Node 간 단일 홉을 갖는 다중링 기반의 광패킷 네트워크 구성)

  • 박홍인;이상화;이희상;한치문
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.386-389
    • /
    • 2003
  • This paper proposes the architecture of a multiple ring based optical network with single hop between edge nodes using either the concept of circuit switching or multi-wavelength label. The structure of the multi-wavelength label, be shown through the single wavelength-band and the multiple wavelength-band that can reduce number of ring. To avoid the collision of the optical packets at an outward port, we proposed the dynamic allocation scheme of the outward optical packets based on the fiber do]ay lines(FDLs).

  • PDF

A Study of Time Synchronization Methods for IoT Network Nodes

  • Yoo, Sung Geun;Park, Sangil;Lee, Won-Young
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.109-112
    • /
    • 2020
  • Many devices are connected on the internet to give functionalities for interconnected services. In 2020', The number of devices connected to the internet will be reached 5.8 billion. Moreover, many connected service provider such as Google and Amazon, suggests edge computing and mesh networks to cope with this situation which the many devices completely connected on their networks. This paper introduces the current state of the introduction of the wireless mesh network and edge cloud in order to efficiently manage a large number of nodes in the exploding Internet of Things (IoT) network and introduces the existing Network Time Protocol (NTP). On the basis of this, we propose a relatively accurate time synchronization method, especially in heterogeneous mesh networks. Using this NTP, multiple time coordinators can be placed in a mesh network to find the delay error using the average delay time and the delay time of the time coordinator. Therefore, accurate time can be synchronized when implementing IoT, remote metering, and real-time media streaming using IoT mesh network.

A Study on the Verification of Traffic Flow and Traffic Accident Cognitive Function for Road Traffic Situation Cognitive System

  • Am-suk, Oh
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.273-279
    • /
    • 2022
  • Owing to the need to establish a cooperative-intelligent transport system (C-ITS) environment in the transportation sector locally and abroad, various research and development efforts such as high-tech road infrastructure, connection technology between road components, and traffic information systems are currently underway. However, the current central control center-oriented information collection and provision service structure and the insufficient road infrastructure limit the realization of the C-ITS, which requires a diversity of traffic information, real-time data, advanced traffic safety management, and transportation convenience services. In this study, a network construction method based on the existing received signal strength indicator (RSSI) selected as a comparison target, and the experimental target and the proposed intelligent edge network compared and analyzed. The result of the analysis showed that the data transmission rate in the intelligent edge network was 97.48%, the data transmission time was 215 ms, and the recovery time of network failure was 49,983 ms.

A reinforcement learning-based network path planning scheme for SDN in multi-access edge computing

  • MinJung Kim;Ducsun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.16-24
    • /
    • 2024
  • With an increase in the relevance of next-generation integrated networking environments, the need to effectively utilize advanced networking techniques also increases. Specifically, integrating Software-Defined Networking (SDN) with Multi-access Edge Computing (MEC) is critical for enhancing network flexibility and addressing challenges such as security vulnerabilities and complex network management. SDN enhances operational flexibility by separating the control and data planes, introducing management complexities. This paper proposes a reinforcement learning-based network path optimization strategy within SDN environments to maximize performance, minimize latency, and optimize resource usage in MEC settings. The proposed Enhanced Proximal Policy Optimization (PPO)-based scheme effectively selects optimal routing paths in dynamic conditions, reducing average delay times to about 60 ms and lowering energy consumption. As the proposed method outperforms conventional schemes, it poses significant practical applications.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

On Antenna Orientation for Inter-Cell Interference Coordination in Cellular Network MIMO Systems

  • Sheu, Jeng-Shin;Lyu, Shin-Hong;Huang, Chuan-Yuan
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.639-648
    • /
    • 2016
  • Next-generation (4G) systems are designed to support universal frequency reuse (UFR) to achieve best use of valuable spectra. However, it leads to undesirable interference level near cell borders. To control this, 4G systems adopt techniques, such as network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC), to improve cell-edge throughput. Network MIMO aims at mitigating inter-cell interference towards cell-edge users (CEUs) through multi-cell cooperation, where each collaborative base station serves both cell-center users (CCUs) and CEUs, including other cells' CEUs, under a power constraint. The present ICIC strategies cannot be directly applied to network MIMO because they were designed in absence of multi-cell coordination. In the presence of network MIMO, this paper investigates antenna orientations in ICIC and the method of power management. Results show that a proper antenna orientation can improve the cell-edge capacity and meantime lower the interference to CCUs. Capacity inconsistency between CCUs and CEUs is detrimental to mobile communications. Simulation results show that the proposed power management for ICIC in network MIMO systems can achieve a uniform data rate regardless users' position.

Privacy Protection Method for Sensitive Weighted Edges in Social Networks

  • Gong, Weihua;Jin, Rong;Li, Yanjun;Yang, Lianghuai;Mei, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.540-557
    • /
    • 2021
  • Privacy vulnerability of social networks is one of the major concerns for social science research and business analysis. Most existing studies which mainly focus on un-weighted network graph, have designed various privacy models similar to k-anonymity to prevent data disclosure of vertex attributes or relationships, but they may be suffered from serious problems of huge information loss and significant modification of key properties of the network structure. Furthermore, there still lacks further considerations of privacy protection for important sensitive edges in weighted social networks. To address this problem, this paper proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the sensitive edges are differentiated from weighted edges according to the edge betweenness centrality, which evaluates the importance of entities in social network. Then, the perturbation operations are used to preserve the privacy of weighted social network by adding some pseudo-edges or modifying specific edge weights, so that the bottleneck problem of information flow can be well resolved in key area of the social network. Experimental results show that the proposed method can not only effectively preserve the sensitive edges with lower computation cost, but also maintain the stability of the network structures. Further, the capability of defending against malicious attacks to important sensitive edges has been greatly improved.