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Abstract 

 With an increase in the relevance of next-generation integrated networking environments, the need to 

effectively utilize advanced networking techniques also increases. Specifically, integrating Software-Defined 

Networking (SDN) with Multi-access Edge Computing (MEC) is critical for enhancing network flexibility and 

addressing challenges such as security vulnerabilities and complex network management. SDN enhances 

operational flexibility by separating the control and data planes, introducing management complexities. This 

paper proposes a reinforcement learning-based network path optimization strategy within SDN environments 

to maximize performance, minimize latency, and optimize resource usage in MEC settings. The proposed 

Enhanced Proximal Policy Optimization (PPO)-based scheme effectively selects optimal routing paths in 

dynamic conditions, reducing average delay times to about 60 ms and lowering energy consumption. As the 

proposed method outperforms conventional schemes, it poses significant practical applications. 
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1. Introduction 

Modern society is in an era of accelerated data-driven digital innovation, which translates into new 

opportunities through technological progress across various industries. With the rapid increase in Internet 

speed, the importance of data generation, collection, and processing is increasing, emphasizing the need for 

efficient and intelligent network management system [1-2]. In this context, SDN, MEC, and 6G, the next-

generation communication technologies, are providing an important turning point in networking technology 

by revolutionizing the design and management of network structures. 

SDN increases the flexibility of network operations by separating the control and data planes, offering the 

advantages of increased network efficiency and reduced operational costs [3]. However, SDN is accompanied 

by security vulnerabilities and difficulties in complex network configurations and management. MEC 

processes data at the network edge by deploying computing resources, thereby shortening response times and 
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reducing data traffic loads, which significantly benefits latency-sensitive mobile applications and IoT devices 

[4-5]. 

6G will elevate these technologies one step further, enabling hyperconnectivity and high-speed 

communication, and will provide an essential foundation for future technologies, such as extensive IoT 

networks, ultra-realistic media, and autonomous vehicles. This enables unprecedented levels of connectivity 

and speed in communication technologies and poses new technological challenges, including spectrum 

allocation, signal interference, and energy consumption [6]. 

In this study, we applied Proximal Policy Optimization (PPO) to SDN, MEC, and 6G environments to 

optimize network path determination, resource allocation, and service placement. In this study, we developed 

an intelligent network management solution that maximizes efficiency and adapts to real-time changes. It 

assessed the use of reinforcement learning in environments that integrate SDN, MEC, and 6G [7]. The 

proposed enhanced PPO scheme swiftly selects optimal routing paths under dynamic conditions, thereby 

enhancing efficiency. This method reduced the average delay times to approximately 60 ms and decreased 

energy consumption, proving that the enhanced PPO outperformed the existing scheme. 

The remainder of this paper is organized as follows. Chapter 2 reviews the existing research on SDN, MEC, 

and 6G, and the application of Reinforcement Learning, particularly PPO. Section 3 discusses the system 

model and explains the integration of SDN, MEC, and 6G. Chapter 4 details the proposed PPO-based network 

optimization technique. Section 5 presents the simulation results for various scenarios. Finally, Section 6 

summarizes the findings and outlines future research directions. 

 

2. Related Work 

In this chapter, we review the research on SDN, MEC, and 6G, and analyze the use of reinforcement learning 

technologies such as PPO in network systems. Additionally, we discuss the interrelations between these 

technologies and how reinforcement learning can optimize them collectively. 

 

2.1 Software-Defined Networking (SDN) 

Existing research on SDN focuses on network flexibility and centralized management, particularly in 

dynamic traffic management and automation of routing policies [8]. However, these studies do not adequately 

address issues of scalability and performance in complex network topologies. Reference [9] highlights the 

need for improved routing algorithms and resource allocation strategies. Our research aims to develop adaptive 

algorithms that dynamically respond to network changes, maintaining high performance and scalability. 

 

2.2 Multi-access Edge Computing (MEC) 

MEC aims to reduce response times and alleviate backhaul network loads by optimizing data processing at 

the network edge [10]. Research has focused on resource allocation and scheduling [11], but often overlooks 

integration challenges with existing infrastructures and the impact of user mobility. Our research will design 

robust resource management strategies that consider the dynamic nature of mobile edge environments. 

 

2.3 6G Communication 

6G technology aims to enable hyperconnectivity and high-speed communication [12]. It focuses on signal 
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processing, frequency spectrum management, and energy-efficient networks, addressing interference and 

security challenges [13]. However, comprehensive solutions for 6G's diverse challenges, such as ultra-low 

latency and massive connectivity, are lacking. Our research will develop holistic approaches integrating 

advanced signal processing, efficient spectrum utilization, and robust security protocols. 

 

2.4 Reinforcement Learning 

Reinforcement learning, especially Proximal Policy Optimization (PPO), is increasingly applied to network 

optimization for its ability to make decisions in dynamic environments [14]. Current research lacks focus on 

its applicability and efficiency in real-world scenarios, failing to address scalability and adaptability in large-

scale networks. Our research aims to develop scalable reinforcement learning algorithms to handle the 

complexities of real-world network environments. 

 

2.5 Integration of SDN, MEC, and 6G through Reinforcement Learning 

Integrating SDN, MEC, and 6G presents opportunities for further optimization. SDN can enhance MEC 

deployment and efficiency through better resource allocation and traffic management. MEC supports 6G’s low 

latency and high-speed requirements. Reinforcement learning, through algorithms like PPO, offers a unifying 

approach to optimize these technologies collectively. It allows for dynamic adjustment to network changes, 

optimizing resource allocation and improving overall performance. Our research will explore adaptive, 

scalable solutions leveraging SDN, MEC, and 6G's strengths to meet modern network demands.  

This paper aims to bridge these gaps by introducing innovative solutions enhancing network scalability, 

integration, and performance through reinforcement learning technologies like PPO. 

 

3. System Model 

This model serves as a foundation for applying the PPO to address challenges related to workload, latency, 

energy consumption, and route optimization. It is specifically designed to support resource allocation and route 

optimization decisions by dynamically reflecting network changes in real-time. Figure 1 illustrates the 

structure of the system model. 

 

 

Figure 1. Architecture of the system model. 
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The SDN controller centrally manages the entire network and controls the switches and routers using 

protocols such as OpenFlow. It ensures efficient traffic management and optimal routing by dynamically 

adjusting to network conditions. The MEC servers, typically located in cell towers or ISP data centers, help 

alleviate traffic loads and minimize service latency by deploying computing resources at the network edge for 

local data processing. These MEC servers communicate directly with local devices, such as smartphones and 

IoT devices, to process data closer to the source, thereby reducing latency and improving response times [15]. 

The relationship between the SDN controller, MEC servers, and local devices is crucial for the system's 

overall efficiency. The SDN controller oversees the entire network, making high-level routing and resource 

allocation decisions. MEC servers handle localized data processing, reducing the burden on the central network 

and enhancing performance for end-users. Local devices interact with MEC servers for quick data processing 

and rely on the SDN controller for broader network connectivity and resource management. By integrating 

these components, the system ensures real-time adaptability and optimized resource usage, leveraging PPO to 

continually refine decision-making processes based on current network conditions. 

 

3.1 Local Computing 

In local computing, tasks are processed directly within a smart device, and the associated delay time and 

energy consumption are calculated as follows (1) and (2). 

 

𝐿𝑙𝑜𝑐𝑎𝑙 =
𝑇𝑖

𝑅𝑙𝑜𝑐𝑎𝑙
                                     (1) 

𝐸𝑙𝑜𝑐𝑎𝑙 = 𝑃𝑙𝑜𝑐𝑎𝑙 ×
𝑇𝑖

𝑅𝑙𝑜𝑐𝑎𝑙
                                   (2) 

 

The delay time, 𝐿𝑙𝑜𝑐𝑎𝑙 calculated from local processing, represents the time required for the data to be 

processed within the smart device. This was calculated by dividing the number of bytes of data, 𝑇𝑖 by the 

device’s processing speed, 𝑅𝑙𝑜𝑐𝑎𝑙. Concurrently, the total energy consumption, 𝐸𝑙𝑜𝑐𝑎𝑙 during local processing 

was determined by multiplying the power consumed, 𝑃𝑙𝑜𝑐𝑎𝑙, by the processing time. 

 

3.2 Remote Computing 

In remote computing, data are processed on a nearby MEC server at the network edge rather than on a local 

device. This reduces communication delays by avoiding data transmission to the central data center. The latency 

and energy consumption of this process are expressed in Equations (3) and (4), respectively. 

 

𝐿𝑟𝑒𝑚𝑜𝑡𝑒 =
𝑇𝑖

𝑅𝑟𝑒𝑚𝑜𝑡𝑒
+ 𝐷𝑛𝑒𝑡𝑤𝑜𝑟𝑘                         (3) 

𝐸𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑃𝑟𝑒𝑚𝑜𝑡𝑒 × (
𝑇𝑖

𝑅𝑟𝑒𝑚𝑜𝑡𝑒
)                         (4) 

 

where 𝐿𝑟𝑒𝑚𝑜𝑡𝑒 represents the delay associated with remote processing, 𝑇𝑖 denotes the number of bytes of 

transmitted data, and 𝑅𝑟𝑒𝑚𝑜𝑡𝑒  represents the processing speed of the MEC server. In addition, 𝐷𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

indicates the network delay. 𝐸𝑟𝑒𝑚𝑜𝑡𝑒  represents energy consumption during remote processing, whereas 

𝑃𝑟𝑒𝑚𝑜𝑡𝑒 represents the average power consumption of the server. These variables are crucial for evaluating the 

efficiency of remote computing and play essential roles in optimizing network performance and energy 
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management.  

 

3.3 Optimization of path planning 

In SDN, path optimization minimizes link costs by assigning weights to each link and calculating path costs 

based on traffic volume, as defined quantitatively in Equation (5). 

 

𝐶 = ∑ 𝛼𝑖 ∙ 𝑥𝑖
𝑛
𝑖=1                                      (5) 

 

In this model, 𝐶 represents the total path cost and each 𝛼𝑖 signifies the weight assigned to the i-th link, 

representing its cost. The weight 𝛼𝑖 can be determined based on network performance indicators such as 

bandwidth usage, latency, cost, or other relevant metrics, which vary depending on the performance 

optimization criteria set by the network designer and operator. The variable 𝑥𝑖 denotes the amount of traffic 

passing through the i-th link and calculates its impact on the overall network cost. 

The scope of optimization varies depending on specific network scenarios or topologies. The proposed 

PPO-based optimization is particularly effective in dynamic and complex network environments where traffic 

patterns are highly variable and real-time adaptability is crucial. Examples include large-scale data centers, 

ISP networks with fluctuating traffic loads, and mobile networks with high user mobility. In these scenarios, 

PPO can significantly improve performance and resource utilization by continually refining decision-making 

processes based on current network conditions. 

 

4. Proposed Scheme 

The proposed method enhances network performance by integrating SDN flexibility, MEC local computing, 

and 6G high-speed communication using the PPO reinforcement learning algorithm to optimize routing by 

considering traffic, delay, and energy consumption. 

 

4.1 State, Action, and Reward - 

The state consists of variables that quantitatively represent the overall condition of the network, defined as 

follows in Equation (6). 

 

𝑆 = (𝐶, 𝐿, 𝑅)                                     (6) 

 

The C represents the connection status of each node and link outlining the network’s structure. 𝐿 indicates 

the traffic load or data currently processed in each link. 𝑅 reflects the available resources such as the computing 

power or storage space of each node. The actions, detailed in Equation (7), involve changes, such as adjusting 

routing paths and reallocating resources. 

 

𝐴 = (∆𝑅, ∆𝑃)                                     (7) 

 

The ∆𝑅 represents changes to routing paths that direct specific traffic through designated links, thereby 
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enhancing network efficiency and minimizing latency. ∆𝑃 involves adjusting the allocation of resources to 

specific nodes or links, aiming to optimize the use of network resources and improve overall performance. A 

Reward Function was used to evaluate the network performance resulting from the selected actions. It 

incorporates various performance metrics, including throughput, latency, and energy usage, as defined in 

Equation (8). 

 

𝑅(𝑆, 𝐴) = 𝜔1 ∙ 𝑇 − 𝜔2 ∙ 𝐷 − 𝜔3 ∙ 𝐸                            (8) 

 

𝑇 represents the throughput, which is the amount of data processed per unit time. 𝐷 denotes the average 

latency, which is the average time required for the data to travel from the source to its destination. 𝐸 represents 

energy usage, which reflects the total amount of energy required to operate a network. The weights 𝜔1, 𝜔2, 𝜔3 

represent the importance of throughput, latency, and energy usage respectively. 

 

4.2 Proposed Scheme 

The proposed technique employs PPO to address the network-path optimization challenge. This method 

aims to enhance real-time network performance, decrease latency, and improve energy efficiency. The 

pseudocode illustrates the processes involved in making routing decisions and allocating resources (Table 1). 

 

Table 1. Proposed scheme 

Step Description 

1 Initialize the policy network 𝜋𝜃 and the value network 𝑉∅ 

2 for each iteration do 

3 Collect set of trajectories by running policy 𝜋𝜃  in the environment 

4 Compute rewards to go 𝑅𝑡 

5 Compute advantage estimates 𝐴𝑡 using the value network 𝑉∅ 

6 Update the policy by maximizing the PPO-Clip objective function 

7   𝐿𝐶𝐿𝐼𝑃 = 𝔼𝑡[min (𝑟𝑡(𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡]̂  

8 Optionally update the value function 𝑉∅ by regression 

9 end for 

 

First, the policy network 𝜋𝜃 and value network 𝑉∅ were initialized. These were used to predict the optimal 

behavior and state value of the network, respectively. During each iteration, data were collected from various 

states of the network through the implemented policy, rewards 𝑅𝑡  and advantage estimate. 𝐴𝑡  were 

subsequently calculated based on these data. This estimate was utilized to update the policy by maximizing 

the PPO-Clip objective function, which adjusted the policy ratio 𝑟𝑡(𝜃) accordingly. 

The PPO-based optimization framework integrates seamlessly with SDN, MEC, and 6G infrastructures by 

dynamically managing resources and optimizing performance based on real-time network data. In SDN, it 

enhances the controller's decision-making for routing and resource allocation. For MEC, it optimizes task 

scheduling and reduces latency. In 6G networks, it adjusts parameters for spectrum allocation and interference 

mitigation. This unified approach ensures cohesive and efficient network operations across all components. 
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5. Performance Evaluation 

We analyzed the simulation results of the PPO-based scheme to evaluate its performance in terms of delay 

time and energy efficiency. Table 2 summarizes the main hyperparameters used in the experiments. 

 

Table 2. Hyper parameters 

Parameter Description Value 

Learning Rate The rate of updating the model 0.001 

Discount Factor Determines the present value of future rewards 0.99 

Epochs Total number of training epochs 300 

Batch Size Number of data points processed per batch 64 

Epsilon Clipping parameter, limits the policy update range 0.2 

 

Through simulation, the Enhanced PPO significantly reduced latency compared to the existing technique, 

particularly in low-latency areas, demonstrating its ability to speed up data transmission and processing under 

high-traffic conditions. Figure 2 shows the average delay time by epoch, indicating an Enhanced PPO’s 

continued reduction in delay time with each epoch, approximately 60 ms compared with 70 ms for the existing 

scheme. 

 

 

Figure 2. Average Latency over Epochs 

 

Figure 3 shows the energy consumption per epoch. The graph shows that the Enhanced PPO was superior 

in terms of energy efficiency. In Epoch 300, the Enhanced PPO consumed 30 energy units, whereas the 

Original PPO consumed approximately 35 units. These data indicate that Enhanced PPO improves energy 

efficiency. These results demonstrate that the Enhanced PPO delivers superior performance in network path 

optimization compared with existing schemes, particularly in reducing latency and increasing energy 

efficiency. 
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Figure 3. Average Energy Consumption over Epochs 

 

To provide a more detailed analysis of the results, we discuss the potential reasons behind the observed 

improvements. The Enhanced PPO likely achieves better energy efficiency due to its ability to more accurately 

predict optimal paths and resource allocation, reducing unnecessary data transmissions and processing. This 

precise optimization leads to lower energy consumption as network devices operate more efficiently. 

Additionally, the reduced latency can be attributed to the Enhanced PPO’s improved decision-making process, 

which quickly adapts to network changes, ensuring data packets are routed through the most efficient paths. 

Therefore, the Enhanced PPO outperformed existing schemes in terms of performance, making it highly 

valuable in various fields related to network optimization. This performance improvement serves as an 

important benchmark for future network designs and operations, demonstrating the potential for significant 

advancements in energy-efficient and low-latency network solutions. 

 

6. Conclusion 

This study shows that the Enhanced PPO outperforms the existing scheme in network path optimization, 

significantly reducing latency and managing energy more efficiently. Its strong performance under low-

latency conditions facilitates effective data processing in high-traffic environments. The enhanced PPO 

quickly selects optimal paths under dynamic conditions, potentially lowering long-term operational costs. 

Future research will assess its broader applicability by analyzing its performance across various parameters 

and network conditions. 
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