• Title/Summary/Keyword: Edge Network

Search Result 781, Processing Time 0.024 seconds

Edge Preserving Image Compression with Weighted Centroid Neural Network (신경망에 의한 테두리를 보존하는 영상압축)

  • 박동철;우영준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1946-1952
    • /
    • 1999
  • A new image compression method to preserve edge characteristics in reconstructed images using an unsupervised learning neural is proposed in this paper. By the unsupervised competitive learning which generalizes previously proposed Centroid Neural Network(CNN) algorithm with the geometric characteristics of edge area and statistical characteristics of image data, more codevectors are allocated in the edge areas to provide the more accurate edges in reconstructed image. Experimental results show that the proposed method gives improved edge in reconstructed images when compared with SOM, Modified SOM and M/R-CNN.

  • PDF

Proposal of Sensor Node and Edge Device for Multi-sensing of Marine IoT (해양 IoT 복합 센싱을 위한 센서 노드와 edge device의 제안)

  • Lee, Seong-Real;Kim, Eui-Young;Lee, Gyu-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.418-420
    • /
    • 2019
  • Sensor node and edge device for multi-sensing of marine IoT service is proposed. Especially, the proposed devices are based on the management and data process through the closed network (i.e., private network) as well as the commercial public network provided by major communication service providers.

  • PDF

An Enhancement Technique of IP Address Reusability over the Dynamic IP Address Assignment Method (동적 IP 주소 할당방식의 IP주소 재사용 효율 증가 기법)

  • Bae Byeong-Sook;Yang Jun-Whan;Kim Jae-Dong;Min Kyeong-Seon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.244-248
    • /
    • 2003
  • DHCP를 이용한 동적 IP주소 할당방식에서 클라이언트가 네트워크 접속을 해제하면서 IP 주소를 자동적으로 반납하지 않음으로 인해 IP 주소 회수가 즉각 이루어지지 않아 IP 주소 재활용을(reusability)이 저하된다. IP 주소의 재활용율을 증가시키면서 DHCP 서버의 부하증가 및 네트워크의 트래픽 증가 최소화를 위한 두 가지 기법으로 DHCP 서버에서 IP 주소의 임대시간을 적응적으로 조정하는 기법과 ICMP echo request 및 reply 메시지를 통한 클라이언트의 동작유무 확인을 통해 비동작 클라이언트의 IP 주소 회수 기법을 제안한다.

  • PDF

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

A cache placement algorithm based on comprehensive utility in big data multi-access edge computing

  • Liu, Yanpei;Huang, Wei;Han, Li;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3892-3912
    • /
    • 2021
  • The recent rapid growth of mobile network traffic places multi-access edge computing in an important position to reduce network load and improve network capacity and service quality. Contrasting with traditional mobile cloud computing, multi-access edge computing includes a base station cooperative cache layer and user cooperative cache layer. Selecting the most appropriate cache content according to actual needs and determining the most appropriate location to optimize the cache performance have emerged as serious issues in multi-access edge computing that must be solved urgently. For this reason, a cache placement algorithm based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed in this work. Firstly, the cache value generated by cache placement is calculated using the cache capacity, data popularity, and node replacement rate. Secondly, the cache placement problem is then modeled according to the cache value, data object acquisition, and replacement cost. The cache placement model is then transformed into a combinatorial optimization problem and the cache objects are placed on the appropriate data nodes using tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a multi-access edge computing experimental environment is built. Experimental results show that CPBCU provides a significant improvement in cache service rate, data response time, and replacement number compared with other cache placement algorithms.

A Study on Improving Data Poisoning Attack Detection against Network Data Analytics Function in 5G Mobile Edge Computing (5G 모바일 에지 컴퓨팅에서 빅데이터 분석 기능에 대한 데이터 오염 공격 탐지 성능 향상을 위한 연구)

  • Ji-won Ock;Hyeon No;Yeon-sup Lim;Seong-min Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.549-559
    • /
    • 2023
  • As mobile edge computing (MEC) is gaining attention as a core technology of 5G networks, edge AI technology of 5G network environment based on mobile user data is recently being used in various fields. However, as in traditional AI security, there is a possibility of adversarial interference of standard 5G network functions within the core network responsible for edge AI core functions. In addition, research on data poisoning attacks that can occur in the MEC environment of standalone mode defined in 5G standards by 3GPP is currently insufficient compared to existing LTE networks. In this study, we explore the threat model for the MEC environment using NWDAF, a network function that is responsible for the core function of edge AI in 5G, and propose a feature selection method to improve the performance of detecting data poisoning attacks for Leaf NWDAF as some proof of concept. Through the proposed methodology, we achieved a maximum detection rate of 94.9% for Slowloris attack-based data poisoning attacks in NWDAF.

Stability-based On-demand Multi-path Distance Vector Protocol for Edge Internet of Things

  • Dongzhi Cao;Peng Liang;Tongjuan Wu;Shiqiang Zhang;Zhenhu Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2658-2681
    • /
    • 2023
  • In edge computing scenarios, IoT end devices play a crucial role in relaying and forwarding data to significantly improve IoT network performance. However, traditional routing mechanisms are not applicable to this scenario due to differences in network size and environment. Therefore, it becomes crucial to establish an effective and reliable data transmission path to ensure secure communication between devices. In this paper, we propose a trusted path selection strategy that comprehensively considers multiple attributes, such as link stability and edge cooperation, and selects a stable and secure data transmission path based on the link life cycle, energy level, trust level, and authentication status. In addition, we propose the Stability-based On-demand Multipath Distance Vector (STAOMDV) protocol based on the Ad hoc AOMDV protocol. The STAOMDV protocol implements the collection and updating of link stability attributes during the route discovery and maintenance process. By integrating the STAOMDV protocol with the proposed path selection strategy, a dependable and efficient routing mechanism is established for IoT networks in edge computing scenarios. Simulation results validate that the proposed STAOMDV model achieves a balance in network energy consumption and extends the overall network lifespan.

A Heuristic Algorithm for Optimal Facility Placement in Mobile Edge Networks

  • Jiao, Jiping;Chen, Lingyu;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3329-3350
    • /
    • 2017
  • Installing caching and computing facilities in mobile edge networks is a promising solution to cope with the challenging capacity and delay requirements imposed on future mobile communication systems. The problem of optimal facility placement in mobile edge networks has not been fully studied in the literature. This is a non-trivial problem because the mobile edge network has a unidirectional topology, making existing solutions inapplicable. This paper considers the problem of optimal placement of a fixed number of facilities in a mobile edge network with an arbitrary tree topology and an arbitrary demand distribution. A low-complexity sequential algorithm is proposed and proved to be convergent and optimal in some cases. The complexity of the algorithm is shown to be $O(H^2{\gamma})$, where H is the height of the tree and ${\gamma}$ is the number of facilities. Simulation results confirm that the proposed algorithm is effective in producing near-optimal solutions.

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.