
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, Nov. 2021 3892
Copyright ⓒ 2021 KSII

The authors thank the editor and the anonymous reviewers for their helpful comments and suggestions. The work
was supported by the National Natural Science Foundation (NSF) under grants (No. 61802353), Henan Provincial
Department of Science and Technology (NO. 192102210270, NO.212102210407), and Dr Fund of Zhengzhou
University of Light Industry.

http://doi.org/10.3837/tiis.2021.11.002 ISSN : 1976-7277

A cache placement algorithm based on
comprehensive utility in big data

multi-access edge computing

Yanpei Liu*, Wei Huang, Li Han, Liping Wang
Zhengzhou University of Light Industry, School of Computer and Communication Engineering,

 Zhengzhou, 450002, China
[E-mail: liuyanpei@zzuli.edu.cn]

*Corresponding authors: Yanpei Liu

Received June 13, 2021; revised August 2, 2021; accepted August 29, 2021;
published November 30, 2021

Abstract

The recent rapid growth of mobile network traffic places multi-access edge computing in an
important position to reduce network load and improve network capacity and service quality.
Contrasting with traditional mobile cloud computing, multi-access edge computing includes a
base station cooperative cache layer and user cooperative cache layer. Selecting the most
appropriate cache content according to actual needs and determining the most appropriate
location to optimize the cache performance have emerged as serious issues in multi-access
edge computing that must be solved urgently. For this reason, a cache placement algorithm
based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed
in this work. Firstly, the cache value generated by cache placement is calculated using the
cache capacity, data popularity, and node replacement rate. Secondly, the cache placement
problem is then modeled according to the cache value, data object acquisition, and
replacement cost. The cache placement model is then transformed into a combinatorial
optimization problem and the cache objects are placed on the appropriate data nodes using
tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a
multi-access edge computing experimental environment is built. Experimental results show
that CPBCU provides a significant improvement in cache service rate, data response time, and
replacement number compared with other cache placement algorithms.

Keywords: Multi-access edge computing, comprehensive utility, big data, replacement cost,
cache placement

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3893

1. Introduction
The large-scale popularization of smart phones and mobile devices in recent years, combined
with the explosive growth of rich media applications, is generating massive data in the
communication system. According to a prediction report by Cisco VNI in 2019, global mobile
data traffic will reach 930 EB by 2022, at which point mobile video traffic will account for 79%
of the total mobile traffic [1]. The rapid growth of mobile traffic, especially the development
of video based broadband and low delay services, has created significant challenges to mobile
networks. The pressure of network bandwidth is increasing dramatically and heavy mobile
application traffic places huge pressure on mobile backhaul core networks. Additionally, with
the increase of network bandwidth, the probability of network congestion increases greatly
and can lead to a rise in packet loss rate and end-to-end network delay, directly impairing user
experience [2].

Deploying the content of computing processing capacity and user needs on edge devices
such as base stations closer to users is an effective way to alleviate peak traffic congestion and
achieve low latency [3]. Thus come into being the technology of multi-access edge computing.
As edge devices such as base stations are very close to users in geographical location, they are
highly suitable for providing edge services. Deploying content caching on edge devices such
as base stations and providing edge services has also become an important research direction
for both academia and industry [4].

An effective edge caching architecture provides numerous benefits, including [5-7]: (1)
When a user requests, if the cache node near the user has cached the user's request content, the
user can obtain the content directly from the cache node nearby, instead of establishing a
connection with the core server at the far end. This reduces data transmission pressure of the
core network; (2) Mobile users deriving the request content from the adjacent cache nodes can
greatly reduce user delay; (3) The use of edge cache technology can lower the number of user
requests to the remote core server and reduce user request processing pressure on the remote
server. The cache architecture in big data multi-access edge computing environment is
illustrated in Fig. 1.

Mobile Core cloud

Wireless Signal Processing & Network

File server

Cache data

Acer station

Cellular base station

Multi-access edge computing environment

Fig. 1. Cache architecture in big data multi-access edge computing environment

3894 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

In the actual deployment of cache content, the user's access behavior and the update of
cache content are highly dynamic [8]. The main problems to address for cache placement
decisions are which content should be selected for caching and which data nodes should cache
content be placed on. Therefore, how to select the appropriate cache content according to the
actual needs and find the most appropriate location to optimize the cache performance must
still be determined.

This paper analyzes the characteristics of cached data objects and data nodes. By using the
three factors of cache object acquisition, cache value, and replacement cost, a comprehensive
utility model is obtained and the best data node is calculated by tabu search algorithm. The
main contributions of this paper are as follows:

(1) The cache value generated by cache placement is calculated using cache capacity, data
popularity, and node replacement rate. The cache placement problem is then modeled
according to cache value, data object acquisition, and replacement cost;

(2) The cache placement model is transformed into a combinatorial optimization problem.
Combined with the concept of the tabu search algorithm, a cache placement algorithm based
on comprehensive utility in multi-access edge computing environment is proposed;

(3) A multi-access edge computing environment is built to verify the feasibility and
effectiveness of the proposed algorithm. Experimental results show that the cache placement
algorithm based on comprehensive utility in multi-access edge computing environments
(CPBCU) provides a significant improvement in cache service rate, data response time, and
the number of replacement data compared with other cache placement algorithms.

The rest of the paper is organized as follows: Section 2 reviews related works. Section 3
describes the cache placement model in edge computing environment. Section 4 presents the
cache placement algorithm based on comprehensive utility in multi-access edge computing
environment. Section 5 describes the details of our proposed algorithms. Section 6 provides
comparison and analysis of experiment results, followed by the conclusion in Section 7.

2. Related work
Cache placement strategies in multi-access edge computing have become a popular research
topic in recent years [9~10]. This section introduces its development status in China and
abroad, and points out some problems identified in the research.

2.1 Cache placement for improving hit rate
Many scholars have studied methods to improve the hit rate through file cache with limited
cache capacity. Pantisano F et al. [11] proposed a novel cache-aware user association
algorithm, which calculates the request distribution of each base station file, caches the file
according to the popularity of the file, and maximizes the hit probability by using the optimal
user access based on the matching algorithm. Zheng C et al. [12] studied network edge caching
using big data and machine learning methods to estimate content popularity and design active
caching strategy. In this way, the performance of the network can be improved and the
growing demand for wireless resources can be alleviated. Müller S et al. [13] proposed a novel
algorithm for context-aware proactive caching, updating the cache content by learning the
context information of connected users regularly so as to improve the hit rate. Wang X et al.
[14] proposed an integration of the deep reinforcement learning technology and federated
learning framework with mobile edge systems to optimize mobile edge computing, caching,
and communication. Lei L et al. [15] presented a viable alternative to the conventional
methods for caching optimization, employing an algorithm which uses deep neural network to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3895

analyze the optimization algorithm of cache content distribution, facilitating a mobile edge
network achieve cache content distribution with the lowest energy consumption. Tao M et al.
[16] proposed a file caching strategy to improve the hit rate and reduce the pressure of
backhaul bandwidth. In this work, it was determined that in cooperative transmission, multiple
base stations can provide access services for the same user, but the base stations must obtain
the same file from the core network at the same time, increasing the backhaul pressure. Qu J et
al. [17] proposed a greedy algorithm for cache content placement which transforms the
problem of cache placement into the problem of maximizing the single tone submodule
function.

2.2 Cache placement to reduce latency
With the increase of cache file hit rate, users are more likely to obtain files directly from the
nearby base station and other edge devices, so file transmission delay will be greatly reduced.
Numerous studies have explored the effect of file caching on reducing file transmission delay.
Wang Y et al. [18] proposed a distributed algorithm with polynomial complexity. This
algorithm reduces the delay of file transmission by file caching and transforms the
optimization problem into a facility location problem. Spivak A et al. [19] proposed an
approach for the improvement of data placement. The algorithm considers the memory
capacity, CPU number, and other attributes, and uses Hadoop Distributed File Systems (HDFS)
cache to improve the task performance. Xie R et al. [20] studied the cooperation between core
network cache and base station cache in 5G, proposing a heterogeneous cooperation cache
strategy for energy universities to achieve energy efficiency optimization of network system.
Liao J et al. [21] studied the optimization of content cache placement in which file and cache
sizes are different and multicast transmission is used to minimize the average return rate. Ren
D et al. [22] proposed a group based cache strategy which considers the allocation of storage
resources to reduce the average delay and total energy consumption of the content. Wei J et al.
[23] studied the cooperation scheme between multi access edge computing (MEC) servers to
optimize the performance of content caching and delivery between MEC and mobile devices.
In this work, the cooperative cache problem is formalized as an integer linear programming
problem and solved by subgradient optimization algorithm. Yu R et al. [24] explored the
application of scalable video coding technology in collaborative video caching and inter cell
scheduling to further improve the cache capacity of system collation.

In addition, the current cache placement methods contain the following problems: (1) Few
studies comprehensively consider the cache capacity of nodes and the number of node
replacements; (2) The cache price value of the combination of data popularity, node
replacement number, and node cache capacity is rarely considered; In response to these
limitations, a cache placement algorithm based on comprehensive utility in multi-access edge
computing environments (CPBCU) is proposed.

3. Cache Placement Model for Multi-access Edge Computing

3.1 Cache placement for improving hit rate
In the multi-access edge computing environment, the architecture of cache placement based on
comprehensive utility is shown in Fig. 2. The system mainly includes three parts: acquisition
of cache objects, cache value, and replacement cost of cache data. The acquisition of cache
object is the transmission of cache data from the data node storing the data to the data node to
be cached; the cache value comprehensively considers the data popularity, replacement rate,

3896 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

and cache capacity of the data node, so that the value of data caching to the data node is the
largest; the replacement cost refers to the possible replacement cost when the data is
transferred to the corresponding data node. This method can improve the utilization of cache
data and reduce the cost of cache replacement and system transmission. The main notations
are summarized in Table 1.

Table 1. Summary of main notations.
Notations Definition

()B n Data block set

()D m Data node set

ib the i data block

jd the j data node
cac

ir The available cache capacity of data node i
mem

ir The cache space size of data node i
cpu

ir the CPU speed of data node i
disk

ir the memory read and write speed of data node i

Cap Cache capacity of data node
(1)R The cache availability of data node
(2)R The CPU speed
(3)R The memory read-write speed of the data node

iRep Replacement rate of data object i

iPop Popularity of data object i

()i kh d ,d The network distance between data nodes id and kd
j

iValue The cache value of data i buffered on the j data node
j

iPenalty The cache replacement cost generated by caching data i to data node j

data

obtaining cache
objects

cache capacity

replacement rate

replacement
cost

cache value
of data

comprehen
sive utility

data popularity

Tabu search
algorithm

 the distance
between data

nodes

 CPU speed

the cache
availability

 memory
read-write

speed
Remaining cache

space

Number of cached data
objects

Optimal placement

data node

 cache placement
algorithm

Fig. 2. Cache placement architecture based on comprehensive utility in big data multi-access edge
computing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3897

3.2 Factors affecting cache placement
In this paper, CPBCU algorithm is employed to consider the popularity of cache objects, cache
capacity of data nodes in edge devices, replacement rate of data nodes, network distance of
data nodes, and replacement cost, integrating these factors for unified quantification.

(1) Cache capacity of data nodes
Suppose the data block set to be cached is represented as () { | 1, 2,..., }iB n b i n= = by n

data blocks, where ib represents the i data block. It is assumed in this work that when the edge
server cluster caches data, the data block size is the same and the data block size is set to mc .
The cluster data node set is composed of m data nodes, which is expressed as

() { | 1, 2,..., }jD m d j m= = , Where jd is the j data node and each data node has limited
cache space.

In multi-access edge computing, the purpose of caching data to data nodes is to improve the
efficiency of task execution and speed up service requests. Node cache capacity Cap is

determined by cache availability (1)R , CPU speed (2)R and memory read and write speed
(3)R .

As the three indicators use different calculation units, they must be homogenized. In this paper,
range method is used to measure all indicators.
The cache availability of data nodes is quantified by the following methods:

1) In an edge server cluster, the available cache capacity of each data node is cac
ir ，and

cache space size is mem
ir , where 1, 2,...,i n= .

2) The cache availability of each data node is calculated as:
cac

i
mem

i

use r
i rr = , the arithmetic

mean of the available cache rates of the cluster data nodes is:
1

n
use

use i
i

avg r n
=

=∑ .

3) The normalization formula of the available cache rate of each data node on the cluster is
as follows:

use
use i

i
use

rR
avg

= (1)

4) Format the available cache rate of data nodes according to range method. The calculation
formula is:

(1)
min 1

max min 1

use use
i ii n

i use use
i ii ni n

R R
R

R R
∈

∈∈

− +
=

− +
 (2)

In a similar way, CPU speed and The memory read-write speed can be obtained.

(2)
min 1

max min 1

cpu cpu
i ii n

i cpu cpu
i ii ni n

R R
R

R R
∈

∈∈

− +
=

− +
 (3)

(3)
min 1

max min 1

disk disk
i ii n

i disk disk
i ii ni n

R R
R

R R
∈

∈∈

− +
=

− +
 (4)

Therefore, the cache capacity of each data node can be expressed as:

3898 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

(1) (2) (3)3 * *i i i iCap R R R= (5)
(2) Replacement rate of data nodes
This paper introduces the cache replacement rate of data nodes, which can accurately

express the cache state and demand degree of data nodes and explain the timeliness of cache
data. The cache replacement rate Rep of a node represents the data size of the cache
replacement of a data node in the unit storage resource. The calculation formula is:

1

k
i mem

i j i
j

Rep data r
=

=∑ (6)

Where k represents the number of cache replacement of data node i , i
jdata is the data

size of data node i in the j replacement, and mem
ir is the size of the cache space of data node

i . The larger the value of data node replacement rate is, the higher the missing rate of cached
data requests of the data node.

(3) Data popularity
The factors that affect the popularity of data mainly include the frequency of data access, the

average access time interval, and the recent nature of the access. The calculation formula of
data popularity Pop can be expressed as follows:

1

1*
last first

i i i
i n now last

i i
j

j

A T TPop
T T AA

=

−
=

−∑
 (7)

where iA is the number of times the data object i has been accessed, last
iT is the last time

that data object i was accessed, first
iT is the first time that data object i was accessed, nowT is

the current time.

3.3 Cache placement model
The cache placement model is determined by three components: data object acquisition, cache
value, and replacement cost.

(1) Obtaining cache objects
Cache data must be acquired before it is placed in the cache. In this paper, the distance

between data nodes is used to represent cache data acquisition. The calculation formula of data
node j acquiring data block i is as follows:

()j
i i kAcq h d ,d= (8)

where ()i kh d ,d is the network distance between data nodes id and kd , that is, the data
transmission overhead between two data nodes. In the multi-access edge computing
environment, the data node of cache data and the data node of storage copy cannot be the same
node, so () 0i kh d ,d > .

(2) Cache value of data
The calculation formula of cache value of data i buffered on the j data node is as follows:

*
/

i jj i
i

j j j

Pop CapPopValue
Rep Cap Rep

= = (9)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3899

For increased convenience, variable ,i jx is defined, which means that data block i is

placed on data node j , and the calculation formula is as follows:

,

1
0, i j

, data block i cached on data node j
x

otherwise


= 


 (10)

Therefore, the formula for calculating the total cache value of all data to be cached on the
data node can be expressed as follows:

,

1 1 1 1

* *n m n m
i j i jj

i
i j i j j

Pop Cap x
Value Value

Rep= = = =

= =∑∑ ∑∑ (11)

(3) Replacement cost
In the multi-access edge computing environment, when the cache is placed, it is assumed

that the data i is cached on the data node j . If the available cache capacity of the data node
can accommodate the data, the resulting replacement cost is 0. If the available cache capacity
of the data node cannot accommodate the data, the resulting replacement cost is / jmc band ,

where jband is the network bandwidth of data nodes and mc is the size of data. Therefore,

the calculation formula of cache replacement cost generated by caching data i to data node j
is as follows:

0,

,

cac
j

j
i

j

mc r
Penalty mcval otherwise

band

 ≤


=  =


 (12)

During cache placement, the replacement cost of data node j is calculated as follows:

,
1

,
1 1

0, 0

, 0

cacn
j

i j
i

j cack n
j

i j
p ij

r
k x

mc
penalty

rmc k x
band mc

=

= =


− ≤

= 
 − >


∑

∑ ∑

=

=
 (13)

(4) Comprehensive utility
The calculation formula of the overall mathematical model of cache placement based on

comprehensive utility is as follows:

, ,
1 1 1 1

*
*()= *

i i

n m n m
i jj j j j j

i j i i i j i
i j i j j

Pop R
x Value Acq Penalty x Acq Penalty

Rep= = = =

− −∑∑ ∑∑ （ - -) (14)

{

,

,
1

,

{0,1}, [1,], [1,]

. . , [1,]

1 | 1, [1, n]}

i j

m

i j
j

i j

x i n j m

s t x n i m

j x i m
=

 ∈ ∀ ∈ ∈
 = ∀ ∈

 ≤ = ∀ ∈ ≤

∑

∑

Therefore, in the multi-access edge computing environment, the objective function of cache
placement problem is calculated as follows:

3900 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

,
1 1

*
max[*]

i

n m
i j j j

i j i
i j j

Pop R
x Acq Penalty

Rep= =
∑∑ （ - -) (15)

{

,

,
1

,

{0,1}, [1,], [1,]

. . , [1,]

1 | 1, [1, n]}

i j

m

i j
j

i j

x i n j m

s t x n i m

j x i m
=

 ∈ ∀ ∈ ∈
 = ∀ ∈

 ≤ = ∀ ∈ ≤

∑

∑

4. Determine the Initial Solution of Cache Placement Based on the
Placement Strategy of Replacement Rate

4.1 Equations
In the tabu search algorithm, the step of solving the optimal solution of the cache placement

problem is a process of locating the optimal solution in the tabu search process. Based on the
mathematical model of cache placement, the objective function of cache placement algorithm
is defined as:

1 2 3()f s E E E= − − (16)
Where 1E is the cache value of data placement, 2E is the cost of data acquisition, and 3E

represents the replacement cost of data nodes. At the end of tabu search, the optimal solution
of cache placement is obtained.

4.2 Initial solution of cache placement based on placement strategy of
replacement rate

The initial solution of cache placement is obtained based on the priority placement algorithm

of replacement rate. The basic steps are as follows:
(1) The data object set to be cached is () { | 1, 2,..., }iB n b i n= = , and the data node set in

the edge server cluster is () { | 1, 2,..., }jD m d j m= = ;

(2) Calculate the popularity of each data object as iPop , and sort it into a set Popset . The

replacement rate of each data node is calculated as jRep and its composition set is Repset ;
(3) Perform steps 4, 5 and 6 for each cache data object in sequence and place the

corresponding cache data object on the corresponding data node;
(4) According to the popularity of each cached data object, the corresponding span of the

data block is calculated as (min) (max min)i i ispan Pop Pop Pop Pop= − − ;
(5) According to step 4, the span span is obtained and the replacement rate of the data

node placed by the data is calculated as *(max min) mini i irep span Rep Rep Rep= − + ;
(6) By comparing the rep with the Repset , the corresponding data nodes and the initial

solution of cache placement are both determined.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3901

5. Implementation of Cache Placement Algorithm for big data
Multi-access Edge Computing

5.1 Algorithm description
Algorithm 1 is the pseudo-code description of cache placement algorithm based on
comprehensive utility in big data multi-access edge computing environments.

Algorithm 1: cache placement algorithm based on comprehensive utility
Input: ()B n is the data set to be cached, ()D m is the collection of data nodes in

Hadoop cluster
Output: Cache data placement result Result
 1: for 1i = to n do
 2: calculate the popularity iPop of each data block i
 3: save iPop to set Popset
 4: end for
5: for 1j = to m do
6: Calculate the cache capacity jCap of each data node j
7: Calculate the replacement rate jRep of each data node j
8: save jCap and jRep to sets Capset and Repset , respectively
9: end for

10: for 1i = to n do
11: Calculate the corresponding span of the data block i
12: Calculate the replacement rate of caching data block i to data node j

*(max min) mini i iRep span Rep Rep Rep= − +
13: for 1j = to m do
14: if [,]jRep Rep Rep∈       
15: Save data node j to set Result
16: end if
17: end for
18:end for
19: Calculate the objective function initS according to Result
20: set current initS S= , best initS S= , and take the initial solution as the optimal solution
21: while count max< do
22: using currentS to form neighborhood Table List
23: for 1k = to List do
24: Getting local optimal solution canS by objective function
25: end for
26: if canS is better than bestS in the taboo table
27: best canS S=

3902 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

28: end if
29: if checkInList(canS)=True
30: current bestS S=
31: else current canS S=
32: addList(canS)
33: end if
34: 1count count= +
35: end while
36: Get the optimal solution Result of cache data placement

5.2 Algorithmic complexity analysis

In this paper, the total number of data placed in the cache is n , the number of data nodes is
m . The time complexity of cache placement optimization algorithm mainly includes two
parts:(1) Initial solution of cache placement: traverse each cache data and obtain an array of
placement results of data and data nodes using a placement algorithm based on displacement
rate. Therefore, the time complexity of initial solution is ()o n* m ; (2) Solution optimization
of cache placement: the initial size is n tabu array. Perform a tabu search based on the
principle of tabu search algorithm. Therefore, the time complexity of solution optimization is

2()o n . Generally, n m> , so the time complexity of cache placement is 2()o n .

6. Experimental Verification and Comparison

6.1 Experimental environment and configuration
(1) Experimental environment
The multi-access edge computing environment was composed of edge servers and core clouds.
The edge servers included nine local hosts and the core cloud was hosted on Alibaba Cloud.
The configuration of the edge server cluster node is shown in Table 2 and the configuration of
the core cloud is shown in Table 3.

Table 2. Multi-access edge cloud node configuration
Host name Configuration IP node function

Master CPU:8-core(i7-9700)
RAM:16GB DISK:2TB

192.168.201.20
192.168.1.2(VPN)

edge orchestrator

Slave1-Slave3

CPU:8-core(i7-9700)
RAM:8GB DISK:512GB

192.168.201.21
192.168.201.22
192.168.201.23

edge servers

Slave4-Slave6

CPU:4-core(i5-9400F)
RAM:8GB DISK:1TB

192.168.201.24
192.168.201.25
192.168.201.26

edge servers

Slave7-Slave9

CPU:4-core(i3-9100)
RAM:8GB DISK:512GB

192.168.201.27
192.168.201.28
192.168.201.29

edge servers

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3903

Table 3. Central cloud instance configuration
Central cloud

service provider
Configuration IP node function

Master CPU:1-core Inter(R) Xeon(R)
E5-2680 v3 2.50GHz;

RAM:4GB Bandwidth:30Mbps

121.42.206.150
192.168.1.10（VPN）

Central cloud
server

Slave1 CPU:1-core Inter(R) Xeon(R)
E5-2680 v3 2.50GHz;

RAM:2GB Bandwidth:20Mbps

121.42.206.151
192.168.1.11

Central cloud
server

Slave2 CPU:1-core Inter(R) Xeon(R)
E5-2680 v3 2.50GHz;

RAM:1GB Bandwidth:10Mbps

121.42.206.152
192.168.1.12（VPN）

Central cloud
server

(2) Evaluation index
1) Cache service rate: refers to the probability that the requested data is responded to by the

data node cache. This indicator is used to reflect the advantages and disadvantages of the cache
placement algorithm. The calculation formula is:

γ α β= (17)
Where α is the number of accessed data stored in the cache and β is the total amount of

data accessed.
2) Data response time: refers to the time required to access data, which is predominantly

used in this paper to test the impact of the cache placement algorithm on data access.
3) Displacement number: refers to the ratio of the number of evicted operations in the data

node's cache to the cache capacity. This indicator reflects the number of data cached in the data
node's cache and the performance of the placement strategy. Its calculation formula is:

1

n
i

i i

m
r
δλ

=

=∑ (18)

Where iδ is the number of cache eviction operations of data node i , ir is the cache

capacity of data node i , and m is the total number of data nodes.

6.1 Experimental results and analysis
To verify the feasibility and effectiveness of the algorithm, the CPBCU algorithm proposed

in this paper was compared with D2D-CCP algorithm [17] and the original centralized cache
management (CCM) in HDFS. The experiment in this section adopts the control variable
method, that is, only one variable is changed in each experiment, while the other variables are
the same. Each experiment is repeated 10 times under the same conditions, and the average
value is taken as the final experimental result.

 (1) Influence of cache capacity on algorithm performance
This group of experiments mainly explored the effect of different cache capacity on the

performance of the algorithm. The range of cache capacity of each data node was 20~50 data
blocks. The experimental simulation placed 100 cache data blocks and randomly read 200 data
blocks in HDFS. The experimental results are provided in Fig. 3, 4, and 5.

3904 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

Fig. 3. Comparison of cache service rates in different cache capacities

Fig. 3 shows the change of cache service rate in different cache capacity. It can be seen that

CCM algorithm has the lowest cache service rate, CPBCU algorithm has the highest cache
service rate. When the cache capacity is increased from 20 to 80, the cache service rates of the
three algorithms also increase. Among them, the cache service rate of D2D-CCP algorithm
rises by about 5% and the cache service rate of the algorithm proposed in this paper is
increased by about 10%. This is because with the increase of cache capacity, the cache of data
nodes can hold more data objects and the cache hit rate will increase, so the cache service rate
of data nodes will also rise.

Fig. 4. Comparison of data response time in different cache capacities

200

300

400

500

600

700

800

900

1000

1100

20 25 30 35 40 45 50

da
ta

 re
sp

on
se

 ti
m

e
(m

s)

cache capacity

CCM D2D-CCP CPBCU

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3905

Fig. 5. Comparison of replacement number in different cache capacities

Fig. 4 shows the change of data response time in varying cache capacity. It can be seen from
the figure that with the increase of cache capacity, the data response time of the three
algorithms decrease and the response time of CPBCU algorithm and D2D-CCP algorithm is
less than that of CCM algorithm. This is because with the increase of cache capacity, data
nodes can hold more cache data and the speed of data acquisition in cache is much faster than
that in disk, so the data response time decreases with the increase of cache capacity.

Fig. 5 shows the results of the replacement number with different cache capacity. It can be
seen from the figure that with the increase of cache capacity, the number of replacements of
the three algorithms decreases, with the smallest number of replacements from CPBCU
algorithm, the highest number of replacements by CCM algorithm. This is because the
CPBCU algorithm considers the popularity and the replacement rate of data nodes, making the
data objects with high popularity difficult to replace.

Fig. 6. Comparison of cache service rates in different data numbers

3906 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

Fig. 7. Comparison of data response time in different data numbers

(2) Influence of data number on algorithm performance
This experiment focused on the effect of different data numbers on the performance of the

algorithm. The number of data varied from 20 to 120, and the experimental results are shown
in Fig. 6, 7, and 8.

Fig. 6 shows the change of cache service rate in different data numbers. It can be seen
from the figure that the cache service rates of the three algorithms are augmented with an
increasing number of data. In a certain number of data, CCM algorithm has the lowest cache
service rate, while D2D-CCP algorithm and CPBCU algorithm have higher cache service rate.
This is because in the process of cache placement, CPBCU algorithm takes into account the
popularity of cache data objects and the replacement cost of data nodes. By caching the data
with high popularity to the data nodes with low replacement number, it can ensure that the data
with high flow is not easily replaced.

Fig. 7 shows the results of the change of data response time in different data numbers. It
can be seen from the figure that as the number of data increases, the response time of the three
algorithms rises. Among them, CCM algorithm has the longest response time, CPBCU
algorithm has the lowest response time. This is because CPBCU algorithm places the data with
high popularity on the data nodes with low replacement number, further increasing the hit rate
of cache data, which makes the response time of CPBCU algorithm the shortest.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3907

Fig. 8. Comparison of replacement numbers in different data numbers

Fig. 8 shows the change results of the replacement number in different data numbers. It
can be seen from the figure that when the number of data is small, the replacement number of
the three algorithms is relatively small, while when the number of data is large, the
replacement number of the three algorithms is relatively large. This is because as the number
of data increases, the number of data replaced in the data node cache will increase, so the
number of replacements will continue to rise.
(3) Influence of data popularity on algorithm performance

This experiment mainly explored the influence of different data popularity on the
performance of the algorithm. The popularity ranged from 0.3 to 0.9. In the experiment, 100
cache data blocks were placed and 200 data blocks in HDFS were randomly read. The
experimental results are shown in Fig. 9, 10, and 11.

Fig. 9 shows the change of cache service rate in different data popularity. It can be seen
from the figure that with the increasing popularity of data, the cache service rate of the three
algorithms improve. Among them, CCM algorithm has the lowest cache service rate, while
D2D-CCP algorithm and CPBCU algorithm have higher cache service rate. This is because
with the increasing popularity of data, the number of data objects that can hit the cache grows
and the cache service rate also increases. In addition, CPBCU algorithm places the data with
high popularity on the data nodes with low replacement number, which further increases the
hit rate of cache data and makes the cache service rate of CPBCU algorithm the highest.

3908 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

Fig. 9. Comparison of cache service rate in different data popularity

Fig. 10. Comparison of response time in different data popularity

Fig. 10 shows the results of data response time changes in different data popularity

conditions. It can be seen from the figure that CCM algorithm has the longest response time,
CPBCU algorithm has the shortest response time. This is because CPBCU algorithm considers
data popularity and replacement cost, which ensures that data with high popularity is not easily
replaced.

Fig. 11 shows the change of the replacement number in different data popularity. It can
be seen from the figure that with the increase of data popularity, the replacement number of the
three algorithms declines, with the replacement number of CPBCU algorithm declining the
fastest. This is because D2D-CCP algorithm and CPBCU algorithm take into account the
popularity of data objects. In addition, CPBCU algorithm also considers caching the data with

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3909

high popularity to the data nodes with low replacement number, which can ensure that the data
is not easily replaced, thus reducing the replacement number.

Fig. 11. Comparison of replacement number of in different data popularity

6.3 Experiment summary
Through the analysis of the above three groups of experiments, the following conclusions

can be drawn: (1) The size of the cache capacity, the number of data, and the popularity of data
all have a certain impact on the cache placement algorithm. The larger the cache capacity, the
lower the number of data, the higher the popularity of data, and the longer the cache placement
time, otherwise, the cache content should be updated frequently; (2) The CPBCU algorithm
proposed in this paper considers the popularity of data and the characteristics of data nodes,
obtaining superior response time and cache service rate compared to other similar algorithms.

7. Conclusion and future work
To fully explore the potential capabilities of the multi-access edge cache, this paper

employed node cache capacity, data popularity, and node replacement rate to calculate the
cache value generated by cache placement. The cache placement problem was modeled by
considering three aspects: cache value, data object acquisition, and replacement cost. On this
basis, combined with the tabu search algorithm, a cache placement algorithm based on
comprehensive utility in big data multi-access edge computing environment was proposed.
This algorithm can reduce network transmission overhead and replacement costs as well as
improve the cache utilization. In the future, diversified scenarios bring diversified challenges
to the network, and the caching technology also needs to be continuously optimized with the
changes of services. For example, how to deal with the changes of wireless network state
caused by mobile users switching between base stations, and how to ensure the service
experience and maximize the caching benefit in the process of users moving are worthy of
research.

3910 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

Acknowledgement
The authors thank the editor and the anonymous reviewers for their helpful comments and
suggestions. The work was supported by the National Natural Science Foundation (NSF)
under grants (No. 61802353), Natural Science Foundation of Henan Province
(No.202300410505), Henan Provincial Department of Science and Technology (No.
192102210270).

References
[1] CHIEN W C, WENG H Y, LAI CF, “Q-learning based collaborative cache allocation in mobile

edge computing,” Future generation computer systems, vol.102, no.1, pp.603-610, 2020.
Article (CrossRef Link)

[2] Costa F R, da Rosa Righi R, da Costa C A, et al, “Nuoxus: A proactive caching model to manage
multimedia content distribution on fog radio access networks,” Future Generation Computer
Systems, vol.93, pp.143-155, 2019. Article (CrossRef Link)

[3] Zhang T, Fang X, Liu Y, et al, “D2D-Enabled Mobile User Edge Caching: A Multi-Winner
Auction Approach,” IEEE Transactions on Vehicular Technology, vol.68, no.12, pp.12314-12328,
2019. Article (CrossRef Link)

[4] Assuncao M D, Silva Veith A, Buyya R, “Distributed data stream processing and edge computing:
A survey on resource elasticity and future directions,” Journal of Network and Computer
Applications, vol.103, pp.1-17, 2018. Article (CrossRef Link)

[5] Biswas S, Zhang T, Singh K, et al, “An analysis on caching placement for millimeter–micro-wave
hybrid networks,” IEEE Transactions on Communications, vol.67, no.2, pp.1645-1662, 2018.
Article (CrossRef Link)

[6] Xu X, Li Y, Huang T, et al, “An energy-aware computation offloading method for smart edge
computing in wireless metropolitan area networks,” Journal of Network and Computer
Applications, vol.133, pp.75-85, 2019. Article (CrossRef Link)

[7] Sinky H, Khalfi B, Hamdaoui B, et al, “Adaptive edge-centric cloud content placement for
responsive smart cities,” IEEE Network, vol.33, no.3, pp.177-183, 2019. Article (CrossRef Link)

[8] Hsieh H C, Chen J L, Benslimane A, “5G virtualized multi-access edge computing platform for
IoT applications,” Journal of Network and Computer Applications, vol.115, pp.94-102, 2018.
Article (CrossRef Link)

[9] Zhang Y, Li C, Luan T H, “A mobility-aware vehicular caching scheme in content centric
networks: Model and optimization,” IEEE Transactions on Vehicular Technology, vol.68, no.4,
pp.3100-3112, 2019. Article (CrossRef Link)

[10] Xu D, Samanta A, Li Y, et al, “Network Coding for Data Delivery in Caching at Edge: Concept,
Model, and Algorithms,” IEEE Transactions on Vehicular Technology, vol.68, no.10,
pp.10066-10080, 2019. Article (CrossRef Link)

[11] Pantisano F, Bennis M, Saad W, “Match to cache: Joint user association and backhaul allocation in
cache-aware small cell networks,” in Proc. of International Conference on Communications, pp.
3082-3087, 2015. Article (CrossRef Link)

[12] Zheng C, Lei L, Zhenyu Z, et al, “Learn to Cache: Machine Learning for Network Edge Caching in
the Big Data Era,” IEEE Wireless Communications, vol.25, no.3, pp.28-35, 2018.
Article (CrossRef Link)

[13] Müller S, Atan O, van der Schaar M, et al, “Context-aware proactive content caching with service
differentiation in wireless networks,” IEEE Transactions on Wireless Communications, vol.16,
no.2, pp.1024-1036, 2016. Article (CrossRef Link)

[14] Wang X, Han Y, Wang C, et al, “In-edge ai: Intelligentizing mobile edge computing, caching and
communication by federated learning,” IEEE Network, vol.33, no.5, pp.156-165, 2019.

http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 3911

[15] Lei L, You L, Dai G, et al, “A deep learning approach for optimizing content delivering in
cache-enabled HetNet,” in Proc. of International symposium on wireless communication systems,
pp.449-453, 2017. Article (CrossRef Link)

[16] Tao M, Chen E , Zhou H, “Content-Centric Sparse Multicast Beamforming for Cache-Enabled
Cloud RAN,” IEEE Transactions on Wireless Communications, vol.15, no.9, pp.6118-6131, 2015.
Article (CrossRef Link)

[17] Qu J, Wu D, Long Y, “D2D Based Caching Content Placement in Wireless Cache-Enabled
Networks,” Journal of Internet Technology, vol.20, no.2, pp.333-344, 2019.
Article (CrossRef Link)

[18] Wang Y, Tao X, Zhang X, “Joint Caching Placement and User Association for Minimizing User
Download Delay,” IEEE Access, no.4, pp.8625-8633, 2016. Article (CrossRef Link)

[19] Spivak A, Nasonov D, “Data Preloading and Data Placement for MapReduce Performance
Improving,” Procedia Computer Science, vol.101, pp.379-387, 2016. Article (CrossRef Link)

[20] Xie R, Tang Q, Huang T, “Energy-efficient hierarchical cooperative caching optimisation for 5G
networks,” IET Communications, vol.13, no.6, pp.687-695, 2019. Article (CrossRef Link)

[21] Liao J, Wong K K, Khandaker M R A, “Optimizing cache placement for heterogeneous small cell
networks,” IEEE Communications Letters, vol.21, no.1, pp.120-123, 2016.
Article (CrossRef Link)

[22] Ren D, Gui X, Lu W, “GHCC: Grouping-based and hierarchical collaborative caching for mobile
edge computing,” in Proc. of International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks, pp.1-6, 2018. Article (CrossRef Link)

[23] Wei J, Gang F, Shuang Q, “Optimal Cooperative Content Caching and Delivery Policy for
Heterogeneous Cellular Networks,” vol.16, no.5, pp.1382-1393, 2017. Article (CrossRef Link)

[24] Yu R, Qin S, Bennis M, “Enhancing software-defined RAN with collaborative caching and
scalable video coding,” in Proc. of International Conference on Communications, pp.1-6, 2016.
Article (CrossRef Link)

http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946
http://doi.org/10.1109/MCOM.1986.1092946

3912 Liu et al.: A cache placement algorithm based on comprehensive
 utility in big data multi-access edge computing

Yanpei Liu, born in 1982, Ph. D, Master's tutor. Her research interests include high-
performance computing, edge computing, big data processing.

Wei Huang, born in 1982, ph. D, associate professor. His research interests include image
processing, remote sensing image processing, machine learning.

Li Han, born in 1978, associate professor. Her major research interests include software
engineering and compilation technology, intelligent information processing, and Pattern
Recognition.

Liping Wang, born in 1981, Ph. D. Her research interests are the application of Internet of
Things technology.

