• Title/Summary/Keyword: Edge Histogram

Search Result 284, Processing Time 0.026 seconds

The Implementing a Color, Edge, Optical Flow based on Mixed Algorithm for Shot Boundary Improvement (샷 경계검출 개선을 위한 칼라, 엣지, 옵티컬플로우 기반의 혼합형 알고리즘 구현)

  • Park, Seo Rin;Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.829-836
    • /
    • 2018
  • This study attempts to detect a shot boundary in films(or dramas) based on the length of a sequence. As films or dramas use scene change effects a lot, the issues regarding the effects are more diverse than those used in surveillance cameras, sports videos, medical care and security. Visual techniques used in films are focused on the human sense of aesthetic therefore, it is difficult to solve the errors in shot boundary detection with the method employed in surveillance cameras. In order to define the errors arisen from the scene change effects between the images and resolve those issues, the mixed algorithm based upon color histogram, edge histogram, and optical flow was implemented. The shot boundary data from this study will be used when analysing the configuration of meaningful shots in sequences in the future.

A Study on Improved Edge Detection Method of Aerial Image Using Histogram Computation (Histogram 연산을 이용한 항공 촬영 영상의 향상된 Edge Detection 방법 연구)

  • Shin, Kwang-Seong;Shin, Seong-Yoon;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.137-138
    • /
    • 2018
  • 이미지의 픽셀 기반 처리는 한 픽셀의 값을 변환하고 다른 픽셀의 값에 관계없이 현재 픽셀의 값에 따라 변환하는 프로세스를 의미한다. 픽셀 기반 처리는 이미지 변환, 이미지 향상 및 이미지 합성과 같은 많은 분야에서 가장 기본적인 작업이다. 본 논문에서는 히스토그램 연산과 같은 영상의 전처리 과정이 경계 검출 결과에 미치는 상호 연관성에 대해 알아보고 픽셀 기반의 처리를 이용하여 효과적으로 영상의 윤곽을 찾는 방법을 제안한다.

  • PDF

Fast Key Frame Extraction in the Compressed Domain using Edge Histogram (에지히스토그램을 이용한 압축영역에서 고속키 프레임 추출기법)

  • Park, Jun-Hyung;Eum, Min-Young;Kim, Myoung-Ho;Choe, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.536-538
    • /
    • 2005
  • As multimedia data and huge-Quantity video data having been increasingly and commonly used, the key frame algorithm, as one of the methods for manipulating these kinds of data, became an important matter and has been studied for many years. But the formerly proposed key frame extraction methods take much processing time or need complex calculations due to decoding processes. In order to solve these problems which the former methods have and to enhance the key frame extraction efficiency, a novel key frame extraction method in compressed domain is proposed in this paper. In this method we get an edge histogram for each I-frame in DCT domain and then extract the key frames by means of histogram difference metric. Experimental results show that our algorithm achieves fast processing speed and high accuracy.

  • PDF

A Study on Hand Shape Recognition using Edge Orientation Histogram and PCA (에지 방향성 히스토그램과 주성분 분석을 이용한 손 형상 인식에 관한 연구)

  • Kim, Jong-Min;Kang, Myung-A
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.319-326
    • /
    • 2009
  • In this paper, we present an algorithm which recognize hand shape in real time using only image without adhering separate sensor. Hand recognizes using edge orientation histogram, which comes under a constant quantity of 2D appearances because hand shape is intricate. This method suit hand pose recognition in real time because it extracts hand space accurately, has little computation quantity, and is less sensitive to lighting change using color information in complicated background. Method which reduces recognition error using principal component analysis(PCA) method to can recognize through hand shape presentation direction change is explained. A case that hand shape changes by turning 3D also by using this method is possible to recognize. Human interface system manufacture technique, which controls a home electric appliance or game using, suggested method at experience could be applied.

  • PDF

Level order Recursive Median Filter by Spatial Histogram (공간 히스토그램을 이용한 레벨 순서별 Recursive Median Filter)

  • 조우연;최두일
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.195-208
    • /
    • 2004
  • Histogram is a very useful method on various practical aspect. With increasing importance of simple calculation method and convenience, it became the basic method in digital image processing nowadays. However, basic limit of using histogram is losing spatial position information of pixels on image. This paper reanalyzes image by presenting histogram with spatial position information(spatial histogram). Also using that result, level order recursive median filter is realized. Presented recursive median filter showed much improved results on edge maintenance aspect compared to existing recursive median filter.

Gray scale image histogram using the horizontal edge information search (그레이스케일 히스토그램을 이용한 에지의 수평 정보획득 영상검색)

  • Jung, Il-Hoe;Park, Jong-An
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • In this paper, this program which is Retrieval System using Image Gray-scale histogram and Edge features is used to reduce the errors incurred by inputting methods which are used in a current Retrieval System. The Retrieval Algorithm is proceeding with several steps which are extracting features of images quality, extracting edge features and refining images, analysing extracted features, retaining important information from analyzed features, retrieving retained information from database, extracting and comparing among images from retrieved database. The proposed Retrieval System is used for a fast retrieval with accuracy and it is confirmed through simulations.

  • PDF

Image Retrieval via Query-by-Layout Using MPEG-7 Visual Descriptors

  • Kim, Sung-Min;Park, Soo-Jun;Won, Chee-Sun
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.246-248
    • /
    • 2007
  • Query-by-example (QBE) is a well-known method for image retrieval. In reality, however, an example image to be used for the query is rarely available. Therefore, it is often necessary to find a good example image to be used for the query before applying the QBE method. Query-by-layout (QBL) is our proposal for that purpose. In particular, we make use of the visual descriptors such as the edge histogram descriptor (EHD) and the color layout descriptor (CLD) in MPEG-7. Since image features of the CLD and the EHD can be localized in terms of a$4{\times}4$ sub-image, we can specify image features such as color and edge distribution on each sub-image separately for image retrieval without a query image. Experimental results show that the proposed query method can be used to retrieve a good image as a starting point for further QBE-based image retrieval.

  • PDF

Adaptive Thresholding Method for Edge Detection (윤곽선 검출을 위한 적응적 임계치 결정 방법)

  • 임강모;신창훈;조남형;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.352-355
    • /
    • 2000
  • In this paper, we propose an adaptive thresholding for edge detection. first, we got histograms for background image and image with moving object, respectively. Then we make difference histogram between histograms of background and object image. A thresholding value is decided using gradient of peak to peak in the difference histogram. The experimentation is processed using a moving car in the road. The result is that edge is detected well regardless of the brightness.

  • PDF

Face Detection in Near Infra-red for Human Recognition (휴먼 인지를 위한 근적외선 영상에서의 얼굴 검출)

  • Lee, Kyung-Sook;Kim, Hyun-Deok
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.189-195
    • /
    • 2012
  • In this paper, face detection method in NIR(Near-InfraRed) images for human recognition is proposed. Edge histogram based on edge intensity and its direction, has been used to detect effectively faces on NIR image. The edge histogram descripts and discriminates face effectively because it is strong in environment of lighting change. SVM(Support Vector Machine) has been used as a classifier to detect face and the proposed method showed better performance with smaller features than in ULBP(Uniform Local Binary Pattern) based method.

Comparison of Performance According to Preprocessing Methods in Estimating %IMF of Hanwoo Using CNN in Ultrasound Images

  • Kim, Sang Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.185-193
    • /
    • 2022
  • There have been various studies in Korea to develop a %IMF(Intramuscular Fat Percentage) estimation method suitable for Hanwoo. Recently, a %IMF estimation method using a convolutional neural network (CNN), a kind of deep learning method among artificial intelligence methods, has been studied. In this study, we performed a performance comparison when various preprocessing methods were applied to the %IMF estimation of ultrasound images using CNN as mentioned above. The preprocessing methods used in this study are normalization, histogram equalization, edge enhancement, and a method combining normalization and edge enhancement. When estimating the %IMF of Hanwoo by the conventional method that did not apply preprocessing in the experiment, the accuracy was 98.2%. The other hand, we found that the accuracy improved to 99.5% when using preprocessing with histogram equalization alone or combined regularization and edge enhancement.