• Title/Summary/Keyword: Edge Diffraction

Search Result 185, Processing Time 0.031 seconds

Jamming Effects of GPS L1 C/A Signal by Knife-Edge Diffraction Loss at Seoul Metropolitan Northwestern Region (회절을 고려한 수도권 서북부 지역에서 GPS L1 C/A 신호의 재밍영향분석)

  • Yoo, Seungsoo;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.757-763
    • /
    • 2013
  • This study discusses the multiple knife-edge diffraction loss with the receiver and jammer located in the Seoul metropolitan northwestern region. The considered positioning and jamming signals are the GPS L1 C/A signal and several jamming signals such as the wideband Gaussian noise, matched spectrum, and continuous wave signals. To calculate the accurate diffraction effects, the 3-dimensional topography data at the Seoul metropolitan northwestern region was used.

E-polarized electromagnetic diffraction by a composite wedge, I: physical optics solution (도체와 유전체가 복합된 쇄기에 의한 E-편파된 전자파의 회절, I: 물리광학해)

  • 김세윤;김상욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.39-46
    • /
    • 1995
  • A complete form of physical optics solution to the E-polarized diffraction by a composite of conducting and dielectric wedges is obtained by sum ov geometrical optics solution and edge-diffracted field. The diffraction coefficients of the edge-diffracted field are expressed in series of cotangent functions. The electric field patterns of the physical optics solution are plotted in figures.

  • PDF

Calculating Array Patterns Using an Active Element Pattern Method with Ground Edge Effects

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The array patterns of a patch array antenna were calculated using an active element pattern (AEP) method that considers ground edge effects. The classical equivalent radiation model of the patch antenna, which is characterized by two radiating slots, was adopted, and the AEPs that include mutual coupling were precisely calculated using full-wave simulated S-parameters. To improve the accuracy of the calculation, the edge diffraction of a ground plane was incorporated into AEP using the uniform geometrical theory of diffraction. The array patterns were then calculated on the basis of the computed AEPs. The array patterns obtained through the conventional AEP approach and the AEP method that takes ground edge effects into account were compared with the findings derived through full-wave simulations conducted using a High Frequency Structure Simulator (HFSS) and FEKO software. Results showed that the array patterns calculated using the proposed AEP method are more accurate than those derived using the conventional AEP technique, especially under a small number of array elements or under increased steering angles.

E-polarized electromagnetic diffraction by a composite wedge, II:Extended diffraction coefficients (도체와 유전체가 복합된 쐐기에 의한 E-편파된 전자파의 회절, II:확장된 회절계수)

  • 김세윤;김상욱
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.1-7
    • /
    • 1997
  • The physical optical solution to the E-polarized diffraction by a composite wedge consisting of perfect conductor and lossless dielectric cannot sayisfy not only the boundary conditions at the wedge interfaces but also the edge condition at the wedge tip. Its diffraction coefficients are extended outside the composite wedge to become the exact solution to the perfectly conducting wedge as its relative dielectric constant increases to infinite or decreases to 1. It is assured that the extended diffraction coefficients approach zero in the arificially complementary region of the composite wedge.

  • PDF

Review of the Hidden Rays of Diffraction

  • Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • A high-frequency analysis technique, called the hidden rays of diffraction (HRD), is reviewed in this paper. The physical optics and the rigorous diffraction coefficients of a perfectly conducting wedge illuminated by a plane wave are compared. The physical existence of hidden rays on the shadow boundary is explained in view of the geometric theory of diffraction (GTD). In particular, a systematic tracing of hidden rays and its visualization are precisely described by introducing the concept of the supplementary boundary. The physical meaning of the null-field condition in the complementary region is also explained.

Calculation of Diffraction Patterns for Incidence of Planewave on Both Sides of a Dielectric Wedge by Using Multipole Expansion (쇄기형 유전체의 양면에 평면파 입사시 다극전개를 이용한 회절패턴 계산)

  • Kim, Se-Yun;Ra, Jung-Woong;Shin Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.16-26
    • /
    • 1989
  • Diffraction patterns of electromagnetic fields for the incidence of E-polarized plane wave on both interfaces of an arbitrary-angle dielect wedge are obtained by sum of geometric optics term and the edge diffracted fields. The diffraction coefficients of the edge diffracted fields are evaluated by employing the physical optics approximation and then correcting its error with the multipole line source at the dielectric edge. For the wedge angle $120^{circ}$, the incident angle $60^{circ}$, the relative dielectric constant of the dielectric wedge, 2, 5, and 10, and the observation distance from the tip of the wedge, 5 and 10 wavelength, the diffraction coefficients and the diffraction patterns corresponding to geometric optics, physical optics, and the solution corrected by the multipole line source are plotted, respectively. While the corrected solutions presented in this paper are valid only in the far-field region, these asymptotic solutions show to satisfy the boundary condition on the dielectric interfaces.

  • PDF

Modeling of Radiation Beams from Ultrasonic Transducers in a Single Medium (단일 매체에서의 평면 초음파 탐촉자의 방사 음장 모델링 기법)

  • Song, Sung-Jin;Kim, Hak-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2000
  • Modeling of radiation beam from ultrasonic transducers has been investigated extensively, since it is one of the most important, fundamental issues that have great influence on the accuracy of an ultrasonic measurement model. Here, three popular radiation models, namely the Rayleigh-Sommerfeld integral model, the boundary diffraction wave model and the edge element model, are discussed briefly, and the radiation beam fields from ultrasonic transducers with planar, circular and rectangular cross-sections are calculated using these three models. Then, the accuracy and the time-efficiency of these methods are compared based on the calculation results.

  • PDF

Prediction of Diffraction Loss in Radio Channels (무선채널에서의 회절손실 예측)

  • 백정기;이형수;김혁제;이성제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.289-296
    • /
    • 1997
  • In this paper, several diffraction formulas are discussed and diffraction losses predicted from each formula for a wedge are compared with each other. Simulation results are also compared with measured ones. It turns out that in real situations, where many scatterers are located around a diffracting wedge, the prediction from the simple knife-edge formula for vertical polarization agrees well with the measured loss.

  • PDF

Millimeter-wave diffraction-loss model based on over-rooftop propagation measurements

  • Kim, Kyung-Won;Kim, Myung-Don;Lee, Juyul;Park, Jae-Joon;Yoon, Young Keun;Chong, Young Jun
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.827-836
    • /
    • 2020
  • Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well-controlled environment to avoid reflected waves also makes long-range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter-wave frequency bands relies on theoretical models, such as the knife-edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel-Kirchhoff diffraction parameter environment. We collected power-delay profiles when millimeter waves propagated over a building rooftop at millimeter-wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction-loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters.

Diffraction of Electromagnetic Waves by Right Angle Dielectric Wedge (직각 쐐기형 유전분에 의한 전자파 회절)

  • Ju, Chang-Seong;Ra, Jeong-Ung;Sin, Sang-Yeong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.5
    • /
    • pp.35-45
    • /
    • 1981
  • An asymptotic solution of electromagnetic waves scattered by a right-angled dielectric wedge for plane wave incidence is obtained. Scattered fields are constructed by waves reflected and refracted from dielectric interfaces (geometric-optical fields) and a cylindrical wave diffracted from the edge. The edge diffracted field is obtained by adding a correction to the edge diffraction of physical optics approximation, where the correction field is calculated by solving a dual series equation amenable to simple numerical calculation. Validity of this result is assured by two limits of relative dielectric constant $\varepsilon$ of the wedge. The total asymptotic field calculated results in a Rawlins' Neumann series solution for small $\varepsilon$, and the edge diffraction pattern is shown to approach that of a perfectly conducting wedge for large $\varepsilon$. Calculated field patterns are presented and the accuracy of physical optics approximation is discussed.

  • PDF