• Title/Summary/Keyword: Eddy region

Search Result 208, Processing Time 0.03 seconds

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

ANALYSIS OF TURBULENT BOUNDARY LAYER OF NATURAL CONVECTION CAUSED BY FIRE ALONG VERTICAL WALL (수직벽 화재 자연대류에 의한 난류 경계층 열유동 특성 해석)

  • Jang, Yong-Jun;Kim, Jin-Ho;Ryu, Ji-Min
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2016
  • The analysis of characteristics of turbulent flow and thermal boundary layer for natural convection caused by fire along vertical wall is performed. The 4m-high vertical copper plate is heated and kept at a uniform surface temperature of $60^{\circ}C$ and the surrounding fluid (air) is kept at $16.5^{\circ}C$. The flow and temperature is solved by large eddy simulation(LES) of FDS code(Ver.6), in which the viscous-sublayer flow is calculated by Werner-Wengle wall function. The whole analyzed domain is assumed as turbulent region to apply wall function even through the laminar flow is transient to the turbulent flow between $10^9$<$Gr_z$<$10^{10}$ in experiments. The various grids from $7{\times}7{\times}128$ to $18{\times}18{\times}128$ are applied to investigate the sensitivity of wall function to $x^+$ value in LES simulation. The mean velocity and temperature profiles in the turbulent boundary layer are compared with experimental data by Tsuji & Nagano and the results from other LES simulation in which the viscous-sublayer flow is directly solved with many grids. The relationship between heat transfer rate($Nu_z$) and $Gr_zPr$ is investigated and calculated heat transfer rates are compared with theoretical equation and experimental data.

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

An Effect of the Eddy Intrusive Transport Variations Across the Shelfbreak on the Korea Strait and the Yellow sea Part 1 : Barotropic Model Study (대륙붕사면에서의 에디 유입에 의한 해수수송량 변화가 대한해협 및 황해에 미치는 영향 제1부 : 순압 모델 연구)

  • YOO, KWANG WOO;OH, IM SANG
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.281-291
    • /
    • 1993
  • A time-dependent primitive two0dimensional calculation is conducted to investigate the variations of Vol. transport onto the Yellow Sea and the Korea Strait with real bathymetries and to tract the Lagrangian movement of water particles. A series of experiment of the barotropic Kuroshio intrusions shows that the eddy induced branching of Kuroshio has sufficient intensity as to modify the continental shelf circulation. This intrusion seems to be one of the important forcing terms such as winds. tides and buoyancy that can also affect the dynamics in the region of the continental shelf. Transport variations across the shelfbreak due to the branching of Kuroshio which come particularly from the southwest of the Kyushu Island, have a strong relationship with the transport variations across the Korea Strait and in the southern area of the Yellow sea. The particle trajectories of the model results are well agreed with the trajectories of satellite tracking drifters obtained by one of the WOCE/TOGA program except the longer travel time period in the present model.

  • PDF

Determination of Vertical Mode in a Three-layered Open Sea (3층구조 외해역에서의 취역류 연식모드 결정기법)

  • Jung, Kyung-Tae;Jin, Jae-Yuoll;So, Jae-Kwi;John Noye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.190-199
    • /
    • 1990
  • The solution for wind drift current in a three-layered open sea region is derived using the Galerkin-Eigenfunction mothod. The presence of discontinuities in the vertical eddy viscosity required a definition of a scalar product which involves the summation of integrals defined over each layer. The expansion of fourth-order B-spline functions is used in determining eigenvalues and corresponding eigenfunctions. In a three-layered system a low value of eddy viscosity is prescribed within the pycnocline to represent the suppression of turburent intensity at the thermocline level. A high concentration of knots within the pycnocline is important in determining eigenfunctions and the associated eigenvalues accurately. Due to the global property of eigenfunctions nonphysical oscillations appear in the current profiles below the surface layer, particularly within the pycnocline.

  • PDF

Remote Field Eddy Current Testing for Detection of Stress Corrosion Cracks in Gas Transmission Pipelines (가스 파이프라인 상의 압력 부식에 의한 흠집 검사를 위한 원격 와전류 탐상 기술)

  • Kim, Dae-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • Magnetic flux leakage (MFL) pigs are traditionally used for the detection of gross corrosion on steel pipelines used for the transmission of natural gas. Alternative nondestructive evaluation (NDE) modalities are required for the detection of stress corrosion cracking (SCC) which tends to exist in colonies oriented axially along the length of the pipeline. This paper describes the use of multiphase rotating magnetic fields in the remote region of the probe as a possible SCC detection mechanism. Details of a prototype pig and test rig are given and the challenges associated with the finite element modeling of the device are discussed. Initial experimental results show that this novel NDE modality is sensitive to axially oriented tight cracks.

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

Numerical Modeling of Wave-Type Flow on a Stepped Weir (계산형 위어에서의 파형흐름 수치모의)

  • Paik, Joongcheol;Kang, Joon Gu;Lee, Nam-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.65-65
    • /
    • 2016
  • Various types of flow conditions are developed in the region just downstream of hydraulic structures such as weir and drop structures. One of distinct flow conditions occurred downstream of drop structures is the wave type flow with undular hydraulic jump formation. We present three-dimensional numerical simulations of a wave type flow formed downstream of a stepped weir which were experimentally investigated by Kang et al. (2010). The turbulent flow over the weir structure is modeling using the unsteady Reynolds-averaged Navier-Stokes (URANS) simulation employing the Spalart-Allmaras one equation model and the detached eddy simulation. Numerical modeling and the performance of turbulence modeling approaches are evaluated by comparing with the experimental measurements in terms of the free surface variation, the shapes and sizes of undular wave, roller near at free surface, recirculation zone near the channel bottom downstream of the structures, and streamwise velocity profiles at selected longitudinal locations.

  • PDF

A Continuous Wavelet Study on Approach Wind and Building Pressure (접근풍속과 건물 변동풍압력에 대한 연속파동변화법의 적용)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.89-97
    • /
    • 2005
  • Application of proper orthogonal decomposition (POD) and continuous wavelet transform (CWT) is introduced to study wind speed and building roof pressures of flow separation region. In this study, a detailed analysis of the approach wind flow, wind-induced building pressure and the relation between the two fields was carried out using the POD technique and CWT analysis. The results show potential of the application of POD and CWT in characterization of spatio-temporal and spectral properties of the approach wind and its induced dynamic pressure events. Some of findings resulting from the application of this analysis can be summarized as follows: (1) The POD first principal coordinate of the roof pressure in the separated shear layer is closely correlated with the longitudinal component of oncoming flow. (2) The CWT analysis suggests that the extreme peak pressure in the separated shear layer is due to condensed large-scale eddy motions.

  • PDF

Development of an Electromagnetic Nondestructive Testing Method for the Prevention of Defects in Steam Generator Tubes at Nuclear Power Plant (원자력발전소 증기발생기 전열관의 결함발생 예방을 위한 전자기 비파괴 검사방법 개발)

  • Shin, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.83-85
    • /
    • 1996
  • Major cause of defects in steam generator tubes at nuclear power plant is the accumulation of magnetite and other byproducts of corrosion in the crevice gap between support plates and tubes. Since damaged tubes result in contamination of the secondary coolant by the radioactive primary coolant, they represent a safety hazard. Early detection of magnetite buildup is, therefore, imperative in order to take remedial measures such as chemical flushing. Although the eddy current testing is being used for the inspection of steam generator tubes, the interpretation of resulting signals is generally a difficult task. This paper uses the phase of sensor coil emf as the test signal to find a way of easier signal interpretation. Numerical study using FEM shows that the shape of resulting signal is good for identifying the relative position of the probe to the support plate, and for discreminating the different shapes and degrees of magnetite buildup in the crevice gap region.

  • PDF