• Title/Summary/Keyword: Eddy currents

Search Result 139, Processing Time 0.026 seconds

Eddy Current Effects on the High Density Magnetic Recording System (고밀도 자기기록 시스템에서 발생하는 와전류에 의한 자기 기록 필드 영향 분석)

  • Won, Hyuk;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 2006
  • The frequency of the recording current and the rotating speed of the recording media are Increase for the high densities in perpendicular magnetic recording system with high conductive pole tip head and soft magnetic under-layer. In the paper, the frequency Induced eddy current and velocity induced eddy currents are analyzed by non-linear 3-dimensional finite element analysis. It it turned out that the frequency induced eddy current decreases the amplitude of the recording fields, whereas the velocity induced eddy current only distorts the distribution of the recording fields in the recording media.

Simulation of Wave-Induced Currents by Nonlinear Mild-Slope Equation (비선형 완경사 방정식에 의한 연안류의 모의)

  • 이정렬;박찬성;한상우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.46-55
    • /
    • 2001
  • An approach using the nonlinear wave model in predicting wave-induced currents is presented. The model results were compared with those of the conventional model using phase-averaged radiation stress, and in addition with experimental data captured by a PIV system. As a result of comparison of wave-induced currents generated behind the surface-piercing breakwater and submerged breakwater, eddy patterns appeared to be similar each other but in general numerical solutions of both models were underestimated.

  • PDF

Tidal and tide-induced residual currents around Hampyung Bay and Hajae Peninsula by numerical simulation (수치모형을 통한 함평만과 해제반도 주변해역의 조류 및 조석잔차류 분포)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.114-125
    • /
    • 2020
  • In order to understand the currents around Hampyung Bay and Haeje Peninsula, 2D numerical simulations for tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have reversing form and flow NNE-SSW from northern Haeje Peninsula to Songi Island, E-S at northern Haeje Peninsula and NNW-SSE in Hampyung Bay. In flood, a part of currents from Imja Island~Nakwhol Island flow along the main stream flowing northeast at offshore region and the rest flow into Hampyung Bay flowing east along the northern coast of Haeje Peninsula. In ebb, currents from Hampyung Bay flow west along the northern coast of Haeje Peninsula and run together with the main stream flowing southeast at offshore region. The currents create an anticyclonic circulation in flood and a cyclonic circulation in ebb around Haeje Peninsula including Hampyung Bay. Tidal currents are accumulated on Doripo which located at the entrance of Hampyung Bay and show high current velocities. Tidal currents and tide induced residual currents are weak at the inside of Hampyung Bay which has narrow entrance, shallow water depth and wide intertidal zone. An anticyclonic eddy is formed around Gaksi Island as a result of tide induced residual currents. In northern coast of Haeje Peninsula, slow constant currents flow east. It is expected that a gradual change of sediment and an increase of flushing time for suspended materials are carried by tidal currents occurring in Hampyung Bay.

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

A Study on Eddy-current Probe with Ferrite Cores over a Layered Half-Space (레이어가 있는 하프스페이스에서 페라이트코아가 있는 와류탐침에 대한 연구)

  • Kim, T.W.;Byun, K.R.;Choi, J.H.;Kang, E.S.;Hwang, H.J.
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.613-616
    • /
    • 1998
  • In this paper, a model of a Eddy-current probe coil with a ferrite core in the presence of a half-space with a layer is developed. The half-space with a layer is accounted for by computing the appropriate Green's function by using Bessel transforms. Upon introducing equivalent Amperian currents within a core to explain effect to a impedance change in the coil due to a (ferrite) core, we derive a volume integral equation, The integral equation is transformed via the method of moments into a vector-matrix equation, which is then solved using a linear equation solver. Through the above processing, we computed impedance value in a Eddy-current probe coil due to a conductivity change of layer.

  • PDF

Optimal Design of an MRI Device Considering the Homogeneity of the Magnetic Field (자기장의 균일성을 고려한 자기공명장치의 최적설계)

  • Lee, Jung-Hoon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.654-659
    • /
    • 2008
  • This paper is to suggest a concept design of the permanent magnet type magnetic resonance imaging (MRI) device based on the parameter optimization method. Pulse currents in the gradient coils will introduce the effect of eddy currents in the ferromagnetic material, which will worsen the quality of imaging. In order to equalize the magnetic flux in the MRI device for good imaging, the eddy current effect in the ferromagnetic material must be taken into account. This study attempts to use the design of experiment (DOE) and the response surface method (RSM) for equalizing the magnetic flux of the permanent magnet type MRI device using that the magnetic flux can be calculated directly using a commercial finite element analysis package. As a result, optimal shapes of the pole and the yoke of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.

A Numerical Study on the Circulation in Deukryang Bay -I. Tidal Circulation forced by $M_2$-tide- (득량만의 해수유동에 관한 수치실험 -1. $M_2$ 조에 의한 해수유동-)

  • JUNG Eun-Jin;HONG Chol-Hoon;LEE Byung-Gul;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.397-403
    • /
    • 1994
  • Circulations in Deukryang Bay are investigated using a numerical shallow water model. In the flow fields observed at four stations, north-south velocity components are dominant. In the model, the circulation forced by $M_2$-tide basically corresponded well to the observations. The model shows the strong currents in the mouth and the eastern part in the bay with about 60 cm/s and 50 cm/s, respectively. The model also shows the eddies in the tidal residual currents. To investigate the mechanism of eddy formation some numerical experiments are carried out. The results show that inertial and topographic effects play an important role in the eddy formation.

  • PDF

Transient Characteristic Analysis of Damper in Superconducting Synchronous Generator by the Compensated 2D Analysis Model (보정된 2차원 해석모델에 의한 초전도 동기발전기의 댐퍼 과도특성 해석)

  • Chun, Yon-Do;Lee, Hyung-Woo;Lee, Ju;Hong, Jung-Pyo;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • This paper presents a novel method for the transient of eddy currents in the dampers of a super-conducting synchronous generator(SCG). The method proposes a 2-D corrected model which takes into account the influence of leakage fluxes of the field winding ends by increasing the effective air gap in order to consider the high precision of the analysis for the conventional 2-D model. The electromagnetic fields for the corrected model are analyzed by the time-stepping finite element method, thus the eddy currents in the dampers and electro-motive forces(EMF) in the stator windings are calculated. As the results, it is proved the presented method is comparatively accurate by comparing measured phase EMF values and the simulation ones, where about 6.4% error at the maximum value of EMF is occurred between them.

  • PDF

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis (3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰)

  • 하덕용;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.