• Title/Summary/Keyword: Eddy current losses

Search Result 85, Processing Time 0.03 seconds

Analysis on Eddy Current Losses for Cylindrical Linear Oscillatory Actuator with Halbach Array according to Drive Voltage Waveform (영구자석 Halbach형 원통형 액추에이터의 구동전압 파형에 따른 와전류 손실)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Park, Ji-Hoon;Ko, Kyoung-Jin;Choi, Jang-Young;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.49-51
    • /
    • 2009
  • This paper deals with the analysis on eddy current losses for cylindrical linear oscillatory actuator (LOA) with Halbach array mover according to voltage waveform. This paper presents analytical procedures for calculation of eddy current losses using Poynting theorem. On the basis of the magnetic vector potential and a two-dimensional (2-d) cylindrical coordinate system, this paper derived analytical solutions of eddy current tosses using phase current analysis. The eddy current losses of each harmonic obtained by fast Fourier transform (FFT) analysis of phase current are compared with results obtained from finite-element method (FEM). Particularly, this paper shows that the eddy current losses of cylindrical LOA according to square voltage waveform are more significant than those according to sinusoidal voltage waveform.

  • PDF

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2310-2316
    • /
    • 2011
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110 (kW) class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnets design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

  • PDF

Analysis on Eddy Current Losses of High Speed Permanent Magnet Synchronous Motor for Turbo Compressor according to Voltage Source Driving (전압 구동 방법에 따른 터보 압축기용 초고속 영구자석 동기 전동기의 회전자 손실 해석)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Ko, Kyoung-Jin;Lee, Sung-Ho;Hong, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.712_713
    • /
    • 2009
  • This paper deals with the analysis on eddy current looses of high speed permanent magnet synchronous motor (PMSM) for turbo compressor according to voltage source driving. This paper presents analytical procedures for calculation of the eddy current losses using Poynting theorem. On the basis of the magnetic vector potential and a two-dimensional (2-D) cylindrical coordinate system, this paper derived analytical solutions of the eddy current looses using phase current analysis. The eddy current losses of each harmonic obtained by fast Fourier transform (FFT) analysis of phase current are with results obtained from finite-element method (FEM).

  • PDF

Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer (초전도 전력 케이블에서의 stabilizer의 형태에 따른 와전류 손실 해석)

  • Choi S. J.;Song M. K.;Lee S. J.;Sim K. D.;Cho J. W.
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.83-86
    • /
    • 2005
  • The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  • PDF

Stator Core with Slits in Transverse Flux Rotary Machine to Reduce Eddy Current Loss

  • Lee, Ji-Young;Koo, Dae-Hyun;Kang, Do-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • This paper presents an eddy current loss analysis for a transverse flux rotary machine (TFRM) with laminated stator cores, which consist of inner and outer cores whose laminated directions are perpendicular to each other. Although the TFRM is laminated to reduce eddy current losses, it still exhibits rapidly increasing core losses as the frequency increases. To solve this problem, slits are introduced to the stator outer core. 3-dimensional finite element analysis (3D FEA) based on the T-${\Omega}$ formulation is used to solve the eddy-current problem for a various numbers of slits in the nonlinear lamination core. The effects of the slits are confirmed using experiment data and 3D FEA results.

Analysis of Eddy Current Loss Considering Interaction Effect in Metal Sheath of 154 kV Three Phase Power Cable (154 kV 3상 전력 케이블의 상호작용에 따른 금속 Sheath에서 발생하는 와전류 손실 분석)

  • Im, Sang Hyeon;Kim, Ki Byung;Park, Gwan Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.389-392
    • /
    • 2020
  • In order to accurately predict the losses in the power cable, analysis of the eddy current losses in the metal sheath is required. The copper loss is easily calculated by the resistance and current of the conductor, but it is difficult to measure and predict the eddy current generated from the metal sheath. For this purpose, the previous study analyzed the eddy current loss in single phase cable, but there is a limit to apply it because three phase cables are used in real environment. Therefore, in this paper, the eddy current loss occurring in the metal sheath of three phase cable according to the cause was analyzed theoretically. In addition, the eddy current loss occurring in the triangular and horizontal array were predicted through electromagnetic numerical analysis.

Experimental Works and Power Loss Calculations of Surface-Mounted Permanent Magnet Machines

  • Choi, Jang-Young;Ko, Kyoung-Jin;Jang, Seok-Myeong
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2011
  • Surface-mounted permanent magnet (PM) machines were examined experimentally and theoretically, through power loss measurements and calculations. Windage, friction and copper losses were calculated using simple analytical equations and finite element (FE) analyses. Stator core losses were calculated by determining core loss coefficients through curve-fitting and magnetic behavior analysis through non-linear FE calculations. Rotor eddy current losses were calculated using FE analyses that considered the time harmonics of phase current according to load. Core, windage and friction open-circuit losses and copper loss were determined experimentally to test the validity of the analyses.

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2012
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110kW class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnet design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

Finite Element Analysis of Power Cables for Wind Turbine Application (전자장해석을 이용한 풍력발전용 전력 케이블의 전자기적 고찰)

  • Kim, Ji-Hyun;Cho, Sung-Ho;Lee, In-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents electromagnetic finite element analysis of power cables for wind turbine application. Eddy current losses are calculated due to high currents along metallic part, and dielectric strength on power cables is investigated for case study, which suggests the optimal cabling configuration for wind turbine construction.

  • PDF

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.