• Title/Summary/Keyword: Economical conditions

Search Result 628, Processing Time 0.025 seconds

A Study on application of Trapezoidal Steel Box Tunnelling Method (지중압입체를 이용한 지하구조물 축조방법의 적용성 연구)

  • Jun, Sung Bai
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.138-154
    • /
    • 2008
  • The conventional non-dig underground structure building method which made an appearance to reduce the social and environmental costs and maximize the efficiency of the social overhead capital facilities could not help being uneconomical because of many problems such as unnecessary excessive excavation, water leakage, obstacle interference, difficulty of curvilinear application and connection complexity between propelled and injected bodies due to indiscriminate application of small and large circular steel pipes without consideration of the site conditions. The T.S.T.M, in which a protruded square tube is applied as a propulsion and injection body in a design that considered site conditions such as ground condition, depth of soil and live load, was able to be economical as it solved the problems of water resistance, minimization of obstacle interference and curvilinearity, and we can see that it can be applied to all grounds by utilizing or complementing the target ground in terms of engineering. Also in configuring the transverse section, it is possible to not only secure excellent structural safety but also implement all of the above engineering characteristics not only in the square cross section but also in the arch cross section, so it was possible to build structures on any section or ground, and we could confirm the LCC reduction effect and the VE effect.

  • PDF

Numerical Analysis for Carinthian Cut and Cover Tunnelling Method (카린시안 터널 공법의 기준 제안을 위한 수치 해석적 연구 - 국내 고속철도 복선터널 표준 단면을 기준으로 -)

  • Roh, Byoung-Kuk;Baek, Seung-Kyu;Cha, Min-Woong
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Carinthian cut and cover tunnelling method which combines cut & cover and NATM tunnel excavation method has increased the interest. Design and construction of arch concrete have been increased, but there is no applicable standards for arch concrete. Therefore, in this study numerical analysis was performed to propose standards for the Carinthian tunnelling method considering a variety of conditions such as ground conditions, tunnel overburden thickness, thickness of backfill, and overburden surface slope angle changes, linear regression equations derived to classify and organize a rational, economical, and safe Carinthian cut and cover tunneling method based proposed.

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity

  • Krishnamurthy, G.;Agarwal, Sarika
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3046-3054
    • /
    • 2013
  • Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.

A Proposal for the Unit Remodeling Considering the Elderly - Focused on Two Older People Living Alone Independently in Public Rental Housing - (노인의 특성을 반영한 단위세대 리모델링 제안 - 장애정도가 낮고 일상생활이 가능한 임대아파트 거주 독거노인 2인을 대상으로 -)

  • Hong, Yoo-Seok;Je, Hae-Seong;Kwon, Soon-Jung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.13 no.2
    • /
    • pp.19-26
    • /
    • 2007
  • As a result of rapid aging speed in our society, it is necessary to supply a lot of housing for older people in near future. When we think that high portion of residence in rental housing complex composed of small units is the elderly, the housing units in those apartments have to be designed for the physical, mental, social, and economical conditions of elderly people who lives in such a residential complex. Considering these living conditions of the elderly, this study proposes a remodeling prototype of a living unit for older people in rental housing complex. For the research of this topic, various characteristics of the elderly and the environmental requirements for them firstly have been analysed from the literature survey and the interviews with two residents living in a rental apartment. And the design considerations for each space of the housing unit such as entrance, living room, bed room, bath room, and so forth have been explored. Based on the design guidelines above, the remodeling plan of a housing unit for older people has been propose as a result of this study.

  • PDF

Monitoring of Dry Cutting and Applications of Cutting Fluid for Ball End Milling

  • Tangjitsitcharoen, Somkiat;Rungruang, Channarong;Laiaddee, Duangta
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • For economical and environmental reasons, the aim of this research is hence to monitor the cutting conditions with the dry cutting, the wet cutting, and the mist cutting to obtain the proper cutting condition for the plain carbon steel with the ball end milling based on the consideration of the surface roughness of the machined parts, the life of the cutting tools, the use of the cutting fluids, the density of the particles of cutting fluids dispersed in the working area, and the cost of cutting. The experimentally obtained results of the relation between tool wear and surface roughness, the relation between tool wear and cutting force, and the relation between cutting force and surface roughness are correspondent with the same trend. The phenomena of surface roughness and tool wear can be explained by the in-process cutting forces. The models of the tool wear with the cutting conditions and the cutting times are proposed to estimate the tool cost for the different cooling strategies based on the experimental data using the multiple regression technique. The cutting cost is calculated from the costs of cutting tool and cutting fluid. The mist cutting gives the lowest cutting cost as compared to others. The experimentally obtained proper cutting condition is determined based on the experimental results referring to the criteria.

An Experimental Study on the Establishment of Optimum Operating Conditions in Sand Flux Apparatus for High-Quality Recycled Sand Manufacture (고품질 순환모래 제조를 위한 샌드플럭스 장치의 최적 운전조건 설정에 관한 실험적 연구)

  • Lee, Jong-suk;Lim, Hyun-Ung;Kim, Jae-Hwan;Lee, Do-Heun;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.23-26
    • /
    • 2007
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. On the other hand, it has to be solved urgently the unbalance of demand and supply about the fine aggregate because the sea sand is restricted by exhaustion of river sand and intensification of environment influence evaluation. Therefore, the purpose of the study was to show the performance of the apparatus developed by the study and to propose the direction of the optimum operating conditions by having an experimental and positive evaluation about quality of recycled sand produced to develop a separating and selecting device of impurities for recycling of construction wastes which can have a bigger improvement of economical efficiency, productivity, environmental property and quality through a basic property of matter of recycled sand by each operating condition of sand flux in comparison with the existing production system of recycled sand.

  • PDF

Properties of Lightweight Foamed Concrete According to Animality Protein Foaming Agent Type (동물성 기포제 종류별 경량기포 콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.34-35
    • /
    • 2019
  • In recent years, the construction industry has also applied the dry method that can be assembled in the field by industrialization and factory production, which is free from climatic effects and can reduce the cost due to mass production and simplify the work in the field. Among the building materials used in this dry method, ALC products are made by mixing calcium oxide, gypsum, cement, and water in silica and putting them in an autoclave to create voids in the interior through steam curing at high temperature and pressure. But it requires curing cycle conditions of warming, isothermal, and temperature curing. It depends on the performance of the product depending on the curing conditions, the economical efficiency due to high oil prices, the emission of greenhouse gases by the use of fossil fuels. Experiments were conducted to select an appropriate animal protein foam for lightweight foamed concrete block which was cured by applying a prefilling method to replace existing ALC products. As a result of investigating the characteristics of lightweight foamed concrete by type of animal protein foam, it is considered that FP3 is most suitable for manufacturing lightweight foamed concrete block.

  • PDF

A Study on the Control of Hydrodynamic forces for Wave Energy Conversion Device Operating in Constantly Varying Ocean Conditions (파력 발전기에 미치는 유체력의 제어에 관한 연구)

  • 김성근;박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • Due to the constantly varying sea-state with which any wave energy conversion device must contend in order to extract energy efficiently , the ability to control the device's position relative to the incident waves is critical in achieving the creation of a truly functional and economical wave energy device. In this paper, the authors will propose methodology based on the theory of a variable structure system to utilize a three dimensional source distribution as a model to estimate anticipated surge, sway and yaw of a wave energy conversion device relative to varying angles and characteristics of incident waves and there from derive a feedback to a sliding mode controller which would reposition the device so as to maximize its ability to extract energy from waves in constantly varying ocean conditions.

  • PDF

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

A parameter sweep approach for first-cut design of 5 MW Ship propulsion motor

  • Bong, Uijong;An, Soobin;Im, Chaemin;Kim, Jaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents a conceptual design approach of air-cored synchronous machine with high temperature superconductor (HTS) field winding. With a given configuration of a target machine, boundary conditions are set in the cylindrical coordinate system and analytic field calculation is performed by solving a governing equation. To set proper boundary conditions, current distributions of the field winding and the armature winding are expressed by the Fourier expansion. Based on analytic magnetic field calculation results, key machine parameters are calculated: 1) inductance, 2) critical current of field winding, 3) weight, 4) HTS conductor consumption, and 5) efficiency. To investigate all potential design options, 6 sweeping parameters are determined to characterize the geometry of the machine and the parameter calculation process is performed for each design options. Among design options satisfying constraints including >80 % critical current margin and >95 % efficiency, in this paper, a first-cut design was selected in terms of overall machine weight and HTS conductor consumption to obtain a lightweight and economical design. The goal is to design a 5-MW machine by referring to the same capacity machine that was previously constructed by another group. Our design output is compared with finite element method (FEM) simulation to validate our design approach.