The Journal of Asian Finance, Economics and Business
/
v.8
no.1
/
pp.15-22
/
2021
This study aims to obtain a stock investment strategy model based on the industrial sector in Indonesia Stock Exchange (IDX). This study uses IDX data for the period of January 1996 to December 2016. This study uses the Markov Regime Switching Model to identify trends in market conditions that occur in industrial sectors on IDX. Furthermore, by using the Logit Regression Model, we can see the influence of economic factors in determining trends in market conditions sectorally and the probability of trends in market conditions. This probability can be the basis for determining stock investment decisions in certain sectors. The results showed descriptively that the stocks of the consumer goods industry sector had the highest average return and the lowest standard deviation. The trend in sectoral stock market conditions that occur in IDX can be divided into two conditions, namely bullish condition (high returns and low volatility) and bearish condition (low returns and high volatility). Differences in the conditions are mainly due to differences in volatility. The use of a Logit Regression Model to produce probability of market conditions and to estimate the influence of economic factors in determining stock market conditions produces models that have varying predictive abilities.
Using a stochastic volatility-in-mean VAR model consisting of the KOSPI index, the foreign exchange rate, the government bond rate, and the credit spread, this study investigates the effects of financial market uncertainty on financial markets. We find that higher uncertainty has recessionary effects on financial markets. The effects are especially stronger in equity markets and in won-dollar exchange markets. We also find that the effects of uncertainty become stronger during times of financial market stress compared to normal times. Finally, the results imply that financial market uncertainty may potentially affect the real sector, too.
PURPOSES : This study evaluates the economic value of national highway construction projects using Real Option Pricing Models. METHODS : We identified the option premium for uncertainties associated with flexibilities according to the future's change in national highway construction projects. In order to evaluate value of future's underlying asset, we calculated the volatility of the unit price per year for benefit estimation such as VOTS, VOCS, VICS, VOPCS and VONCS that the "Transportation Facility Investment Evaluation Guidelines" presented. RESULTS : We evaluated the option premium of underlying asset through a case study of the actual national highway construction projects using ROPM. And in order to predict the changes in the option value of the future's underlying asset, we evaluated the changes of option premium for future's uncertainties by the defer of the start of construction work, the contract of project scale, and the abandon of project during pre-land compensation stages that were occurred frequently in the highway construction projects. Finally we analyzed the sensitivity of the underlying asset using volatility, risk free rate and expiration date of option. CONCLUSIONS : We concluded that a highway construction project has economic value even though static NPV had a negative(-) value because of the sum of the existing static NPV and the option premium for the future's uncertainties associated with flexibilities.
The standard GARCH model imposing symmetry on the conditional variance, tends to fail in capturing some important features of the data. This paper, hence, introduces the models capturing asymmetric effect. They are the EGARCH model and the GJR model. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. This paper shows that there is significant evidence of GARCH-type process in the data, as shown by the test for the Ljung-Box Q statistic on the squared residual data. The estimated unconditional density function for squared residual is clearly skewed to the left and markedly leptokurtic when compared with the standard normal distribution. The observation of volatility clustering is also clearly reinforced by the plot of the squared value of residuals of export volume and values. The unconditional variance of both export volumes and export value indicates that large shocks of either sign tend to be followed by large shocks, and small shocks of either sign tend to follow small shocks. The estimated export volume news impact curve for the GARCH also suggests that $h_t$ is overestimated for large negative and positive shocks. The conditional variance equation of the GARCH model for export volumes contains two parameters ${\alpha}$ and ${\beta}$ that are insignificant, indicating that the GARCH model is a poor characterization of the conditional variance of export volumes. The conditional variance equation of the EGARCH model for export value, however, shows a positive sign of parameter ${\delta}$, which is contrary to our expectation, while the GJR model exhibits that parameters ${\alpha}$ and ${\beta}$ are insignificant, and ${\delta}$ is marginally significant. That indicates that the asymmetric volatility models are poor characterization of the conditional variance of export value. It is concluded that the asymmetric EGARCH and GJR model are appropriate in explaining the volatility of export volume, while the symmetric standard GARCH model is good for capturing the volatility.
I build a small open economy (SOE) dynamic stochastic general equilibrium (DSGE) model to investigate the effect of a heterogeneous wage contract between regular and temporary workers on a macroeconomic volatility in a financially fragile economy. The imperfect financial market condition is captured by a quadratic financial adjustment cost for borrowing foreign assets, and the labor market friction is captured by a Nash bargaining process which is only available to the regular workers when they negotiate their wages with the firms while the temporary workers are given their wage which simply equals the marginal cost. As a result of impulse responsesto a domestic productivity shock, the higher elasticity of substitution between two types of workers and the lower weight on the regular workers in the firm's production process induce the higher volatilities in most variables. This is reasoned that the higher substitutability creates more volatile wage determination process while the lower share of the regular workers weakens their Nash bargaining power in the contract process.
In this study, we examined the fractal structure of the Nikkei225, HangSeng, Shanghai Stock Exchange and Straits Times Index of Singapore. Empirical analysis was performed via non-parametric, semi-parametric long memory tests and also fractal dimension calculations. In order to avoid spurious long memory features, besides the Detrended Fluctuations Analysis (DFA), we also used Smith's (2005) modified GPH method. As for fractal dimension calculations, they were conducted via Box-Counting and Variation (p=1) tests. According to the results, while there is no long memory property in log returns of any index, we found evidence for long memory properties in the volatility of the HangSeng, the Shanghai Stock Exchange and the Straits Times Index. However, we could not find any sign of long memory in the volatility of Nikkei225 index using either the DFA or modified GPH test. Fractal dimension analysis also demonstrated that all raw index prices have fractal structure properties except for the Nikkei225 index. These findings showed that the Nikkei225 index has the most efficient market properties among these markets.
The linkages between asset prices and macroeconomic outcomes are long-standing issue to both economists and monetary authorities. This paper explores the impact of asset prices on output and price in China. It focuses on the impacts of asset prices on the low quantiles of GDP gap and high quantiles of price gaprespectively. The main findings are the following: the influence of stock price gap, stock returns, and money growth on the different quantile of GDP gap and price gap are noticeable different, and there are significant impacts on the left tail of GDP gap distribution and on the right tail of price gap distribution. This implies that the results coming from simple regression will underestimate the economic risk imposed by asset price volatility. Moreover, these results also provide the caveat that one should cautiously distinguish the meaning of asset price gap and asset price growth rate and use them, through their contents are similar in some sense. One implication for monetarypolicy is that authority should interpret the relationship between asset prices and macro-economy in wider perspectives, and make the policy decision taking the impacts of asset prices on the tails of economy.
KIEE International Transactions on Power Engineering
/
v.4A
no.3
/
pp.159-166
/
2004
Forecasting prices in electricity markets is critical for consumers and producers in planning their operations and managing their price risk. We utilize the generalized autoregressive conditionally heteroskedastic (GARCH) method to forecast the electricity prices in two regions of New York: New York City and Central New York State. We contrast the one-day forecasts of the GARCH against techniques such as dynamic regression, transfer function models, and exponential smoothing. We also examine the effect on our forecasting of omitting some of the extreme values in the electricity prices. We show that accounting for the extreme values and the heteroskedactic variance in the electricity price time-series can significantly improve the accuracy of the forecasting. Additionally, we document the higher volatility in New York City electricity prices. Differences in volatility between regions are important in the pricing of electricity options and for analyzing market performance.
The purpose of this study is to use the EGARCH model and Granger causality test to analyze how the change in the BDI affects the Korean stock price volatility. The main analysis results are summarized as follows. First, according to the results of the mean equation, the change in the BDI is significant in large-cap stocks, as well as in the manufacturing, service, and chemistry indexes, but not in others. This implies that the Korean stock market does not respond appropriately to the maritime market situation; further, the increase in demand for raw materials has not led to a real economic recovery. Second, in the result of the variance equation, the coefficient on the change in the BDI is negative(-), and the change in the BDI is significant for all size indexes. Particularly, the change in the BDI has a greater impact on the volatility of small-cap stocks than that of large-cap stocks. The results of the analysis of the sector indexes were statistically significant for the service, financial, construction, and electric and electronics industries, but not for the manufacturing and chemical industries. In particular, the changes in the BDI have the greatest impact on the construction industry. Third, according to the Granger causality test results, the change in the BDI leads the financial industry and construction industry. There is, however, no relationship between the BDI and the other indexes. This shows that change in the shipping freight index can be used to predict the volatility in the Korean stock market. This can help investors and policymakers make better decisions.
The drybulk shipping market has high freight rate volatility in the chartering market and various and complex factors affecting the market. In the unstable economic situation caused by the COVID-19 pandemic in 2020, the BDI plunged due to a decrease in trade volume, but turned from the end of 2020 and maintained a booming period until the end of 2022. The main reason for the market change is the decrease in the available fleet that can actually be operated for cargo transport due to port congestion by the COVID-19 pandemic, regardless of the fleet and trade volume volatility that have affected the drybulk shipping market in the past. A decrease in the actual usable fleet due to vessel waiting at port by congestion led to freight increase, and the freight increase in charting market led to an increase in second-hand ship and new-building ship price in long-term equilibrium relationship. In the past, the drybulk shipping market was determined by the volatility of fleet and trade volume. but, in the future, available fleet volume volatility by pandemics, environmental regulations and climate will be the important factors affecting BDI. To response to the IMO carbon emission reduction in 2023, it is expected that ship speed will be slowed down and more ships are expected to be needed to transport the same trade volume. This slowdown is expected to have an impact on drybulk shipping market, such as a increase in freight and second-hand ship and new-building ship price due to a decrease in available fleet volume.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.