• Title/Summary/Keyword: Economic Potential

Search Result 1,846, Processing Time 0.038 seconds

Pilot Evaluation for the Introduction of Ecosystem Accounting for Flood Control (홍수조절 생태계 계정 도입을 위한 전국 단위 시범 평가)

  • Tae-Ho Lee;Hee-Jin Moon;Gumsung Cheon;Jung-In Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.488-502
    • /
    • 2023
  • Ecosystem service accounting must measure ecosystem supply functions, demand, and the actual service flows that occur between them. In order to measure flows, supply and demand relationships must be defined, and a methodology that can objectify complex connections is needed. Although various studies on ecosystem services have been conducted in Korea, but researches on accounting for ecosystem services are not enough. The purpose of this study is to evaluate flood control ecosystem services by applying the EU methodology studied in the Experimental Ecosystem Account (EEA) of System of Environmental Economy Account (SEEA) and explore ways to introduce ecosystem account. To conduct the study, the ecosystem's runoff retention potential, social and economic demand for flood control, and actual service benefit flows formed from the relationships between them were modeled and quantified on a spatial basis. As a result of calculating the actual flow of flood control ecosystem services, the total domestic service amount was calculated to be 165,595 (ha), and it was confirmed that much of it was concentrated in agricultural land. In order to account for domestic flood control services in the future, key spatial data such as land cover maps must be continuously established and managed, and researches on input data and methodologies applicable to various spatial scopes such as national, regional, and unit watersheds are expected to be necessary.

Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery (다종 위성영상을 활용한 재난대응 방안 연구)

  • Jongsoo Park;Dalgeun Lee;Junwoo Lee;Eunji Cheon;Hagyu Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.755-770
    • /
    • 2023
  • Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.

Why Culture Matters: A New Investment Paradigm for Early-stage Startups (조직문화의 중요성: 초기 스타트업에 대한 투자 패러다임의 전환)

  • Daehwa Rayer Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • In the midst of the current turbulent global economy, traditional investment metrics are undergoing a metamorphosis, signaling the onset of what's often referred to as an "Investment cold season". Early-stage startups, despite their boundless potential, grapple with immediate revenue constraints, intensifying their pursuit of critical investments. While financial indicators once took center stage in investment evaluations, a notable paradigm shift is underway. Organizational culture, once relegated to the sidelines, has now emerged as a linchpin in forecasting a startup's resilience and enduring trajectory. Our comprehensive research, integrating insights from CVF and OCAI, unveils the intricate relationship between organizational culture and its magnetic appeal to investors. The results indicate that startups with a pronounced external focus, expertly balanced with flexibility and stability, hold particular allure for investment consideration. Furthermore, the study underscores the pivotal role of adhocracy and market-driven mindsets in shaping investment desirability. A significant observation emerges from the study: startups, whether they secured investment or failed to do so, consistently display strong clan culture, highlighting the widespread importance of nurturing a positive employee environment. Leadership deeply anchored in market culture, combined with an unwavering commitment to innovation and harmonious organizational practices, emerges as a potent recipe for attracting investor attention. Our model, with an impressive 88.3% predictive accuracy, serves as a guiding light for startups and astute investors, illuminating the intricate interplay of culture and investment success in today's economic landscape.

  • PDF

A Study on Analysis and Enhancement Strategy of South Korea's Defense Industry Exports Amidst Global Geopolitical Crisis (세계 지정학적 위기 속에서 한국의 방산수출 분석 및 강화 전략 연구)

  • Dongbum Kim;Youngsam Yoon
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.181-188
    • /
    • 2024
  • Amid global geopolitical crises that are heightening tensions worldwide, the importance of national security is being reevaluated. Consequently, South Korea is gaining attention in the global defense market due to its superior technology, competitive pricing, and rapid delivery capabilities. The increasing international demand for defense materials offers opportunities for the development of the domestic defense industry and has the potential to lead to long-term defense strategies and an expansion of exports. In particular, the development of future advanced weapons systems and the expansion of defense exports are likely to be possible through a deep understanding of the international political and economic situation and proactive defense diplomacy. This study analyzes the impact of current global geopolitical crises on Korea's defense industry and presents effective strategies based on these findings, including innovative improvements to defense acquisition systems and the discovery of overseas defense cooperation partners to strengthen defense exports. This strategic approach aims to balance domestic consumption with exports, enhance military strength, and improve the country's standing in the international community. Therefore, efforts are needed to ensure the sustainable growth of the defense industry, enabling South Korea to achieve economies of scale and play a pivotal role in the global defense industry.

Detection of microbial organisms on Apis mellifera L. beehives in palm garden, Eastern Thailand

  • Sirikwan Dokuta;Sumed Yadoung;Peerapong Jeeno;Sayamon Hongjaisee;Phadungkiat Khamnoi;Khanchai Danmek;Jakkrawut Maitip;Bajaree Chuttong;Surat Hongsibsong
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats from microbial contaminants. Understanding and detecting microbial organisms in these beehives is essential for the preservation of bee health, honey production, and the broader ecosystem. However, the problem of microbial infection and antibiotic-resistant bacteria is more severe and continuously increasing, resulting in a health, economic, and social crisis. The purpose of this study is to determine the prevalence of microorganisms in A. mellifera beehives in palm gardens in Rayong province, Eastern Thailand. Results: Ten swabs in transport media were swabbed and obtained from different parts of each beehive (1 swab per beehive), for a total of 10 hives. Traditional microbial culture-based methods, biochemical tests, and antimicrobial susceptibility (disc-diffusion) tests were used to detect microbial organisms and antibiotic resistance in bacteria. The swab tests from nine beehives resulted in the detection of Gram-positive bacteria (63.64%), Gram-negative bacteria (27.27%), and fungi/yeast (9.09%). These microorganisms are classified as a group of coagulase-negative Staphylococcus spp. and made up 40.91% of the bacteria discovered. Other bacteria found were Coryneform bacteria (13.64%), Pantoea spp. (13.64%), Bacillus spp. (9.09%), yeast (9.09%), glucose non-fermentative Gram-negative bacilli (9.09%), and Pseudomonas spp. (4.55%). However, due to the traditional culture-based and 0biochemical tests usually used to identify the microbial organisms in clinical specimens and the limitation of identifying some environmental microbial species, the results of the antimicrobial susceptibility test cannot reveal if the organism is resistant or susceptible to the drug. Nevertheless, drug-sensitive inhibition zones were formed with each antibiotic agent. Conclusions: Overall, the study supports prevention, healthcare, and public health systems. The contamination of microorganisms in the beehives may affect the quality of honey and other bee products or even the health of the beekeeper. To avoid this kind of contamination, it is therefore necessary to wear personal protective equipment while harvesting honey and other bee products.

Geochemical Characteristics and Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2007 (spring season) (2007년 봄철 대전지역에서 발생한 황사 및 대기부유물의 지구화학적 특성 및 중 금속의 오염도)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;Bae, Beob-Geun
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.217-235
    • /
    • 2012
  • We evaluated the geochemical characteristics and their potential pollution of Asian Dusts in Daejeon, Korea during spring 2007. Compared with the chemical compositions of soils in source area of Asian Dust, those of aerosols in Daejeon were enriched with trace elements (ten to hundred fold), inferring that pollutants from China have affected on local environment in adjoining country such as Korea. Chemical analysis of aerosols during Asian dust showed that fine particles ($PM_{2.5}$) contained high contents of trace elements such as Cr, Cu, Pb, Zn, V, S, As, Cd, Co, Ni, Mo, Sb, Cs, Rb, Th, Sc and Y. In the case of TSP (Total Suspended Particle), Zr, Sr, Ba, Li, Th and U were contained much more than other trace elements. The contents of some elements (i.e. Li, Cs, Co, U, Cr, Ni, Rb, V, Th, Y, Sr and Sc) in aerosols collected in Asian Dust period, which are not likely enriched by air pollutants, were higher (2 - 4.2 fold) than those in Non Asian Dust period, indicating that these elements could be used as indicator elements for determining the occurrence of Asian Dust phenomena (especially, Sr, V, Cr & Li). In the case of Asian Dust coming through the big cities and/or industrial areas of China, the domestic aerosols had higher contents of trace elements (such as S, Cd, Zn, Pb, Cu, Mo and As) than those from Northeastern China via North Korea, indicating that the transportation courses of air mass are very important to determine the pollution degrees. Using the enrichment factors of trace elements in aerosols during Asian Dust and Non Asian Dust, we identified that some elements (i.e. S, Zn, Cu, Pb, As, Mo and Cd) were most problematic in terms of environmental hazard aspects, and these elements could affect adverse effects on human health as well as ecosystem and surface environment (soil and water) through long-lived precipitation.

Status of Mineral Resources and Mining Development in North Korea (북한 광물자원 부존 및 개발현황 개요)

  • Koh, Sang Mo;Lee, Gill Jae;Yoon, Edward
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.291-300
    • /
    • 2013
  • The potential mineral resources in North Korea are magnesite, limestone, coal, graphite, iron, gold, silver, lead, and zinc. North Korea is mainly exporting coal and iron to China(70%) and EU countries. Gold ore reserves(or resources) in North Korea are about 2,000 tons and annual production is 2 tons based on metal. Major gold mines are Sooan, Holdong, and Daeyoodong mines and six smelters are operating. Fe ore reserves (or resources) are 4.3 billion tons and annual production is about 5 million tons based on 63.5% Fe. Major iron mines are Moosan, Leewon, Eunryul, Shinwon, and Jaeryong and 7 smelters are operating. Pb and Zn ore reserves(or resources) are Pb 470,000 tons and Zn 15 million tons, and annual productions are about Pb 26,000 tons and Zn 50,000 tons based on metal respectively. Major Pb-Zn mines are Gumdock and Seongcheon mines. Magnesite ore reserves(or resources) are 2.8 billion tons (95% MgO) and annual production is about 150,000 tons. Major magnesite mines are Ryongyang, Daeheung Youth and Ssangryong mines, and 5 magnesium refractory factories are operating. Apatite ore reserves(or resources) are 340 million tons(30% $P_2O_5$) and annual production is about 300,000 tons(crude ore). Major apatite mines are Daedaeri, Dongam and Poongnyen mines. Coal is established as an important strategic fuel mineral resources and is a major energy source in North Korea. Coal ore reserves(or resources) are 18.6 billion tons and annual production is about 20 million tons. The main coal fields is located in southern Pyongan and the Jigdong mine is the biggest in North Korea.

Correlation of Arsenic and Heavy Metals in Paddy Soils and Rice Crops around the Munmyung Au-Ag Mines (문명 금은광산 주변 논토양에서 As 및 중금속의 토양과 벼작물의 상관성 평가)

  • Kwon, Ji Cheol;Park, Hyun-Jung;Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.337-349
    • /
    • 2015
  • This study has focused on investigation of correlation for As and heavy metals in paddy soil and rice crops sampled in the vicinity of the abandoned Munmyung Au-Ag mine. Soil samples extracted by various methods including aqua regia, 1 M $MgCl_2$, 0.01 M $CaCl_2$ and 0.05 M EDTA were analyzed for As and heavy metals (Cd, Cu, Pb and Zn). Rice grain samples grown on the soils were also analyzed for the same elements to evaluate the relationships between soils and rice crops. According to soil extraction methods, As and heavy metal contents in the soils were decreased in the order of aqua regia > 0.01 M $CaCl_2$ > 1 M $MgCl_2$ > 0.05 M EDTA. In addition to correlation analysis, statistically significant correlation with the four extraction methods (p<0.01) were found in the soil and rice samples. As calculation of biological accumulation coefficients (BACs) of the rice crops for As and heavy metals, the BACs for Cd, Zn and Cu were relatively higher than those for As and Pb. This study also carried out a stepwise multiple linear regression analysis to identify the dominant factors influencing metal extraction rates of the paddy soils. Furthermore, daily intakes of As and heavy metals from regularly consumed the rice grain (287 g/day) grown on the contaminated soils by the mining activities were estimated, and found that Cd and As intakes from the rice reached up to 73.7% and 51.8% for maximum allowance levels of trace elements suggested by WHO, respectively. Therefore, long-term consumption of the rice poses potential health problems to residents around the mine, although no adverse health effects have yet been observed.

Evaluation of the CO2 Storage Capacity by the Measurement of the scCO2 Displacement Efficiency for the Sandstone and the Conglomerate in Janggi Basin (장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가)

  • Kim, Seyoon;Kim, Jungtaek;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2016
  • To evaluate the $CO_2$ storage capacity for the reservoir rock, the laboratory scale technique to measure the amount of $scCO_2$, replacing pore water of the reservior rock after the $CO_2$ injection was developed in this study. Laboratory experiments were performed to measure the $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin, which are classified as available $CO_2$ storage rocks in Korea. The high pressurized stainless steel cell containing two different walls was designed and undisturbed rock cores acquired from the deep drilling site around Janggi basin were used for the experiments. From the lab experiments, the average $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin was measured at 31.2% and 14.4%, respectively, which can be used to evaluate the feasibility of the Janggi basin as a $scCO_2$ storage site in Korea. Assuming that the effective radius of the $CO_2$ storage formations is 250 m and the average thickness of the conglomerate and the sandstone formation under 800 m in depth is 50 m each (from data of the drilling profile and the geophysical survey), the $scCO_2$ storage capacity of the reservoir rocks around the probable $scCO_2$ injection site in Janggi basin was calculated at 264,592 metric ton, demonstrating that the conglomerate and the sandstone formations in Janggi basin have a great potential for use as a pilot scale test site for the $CO_2$ storage in Korea.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.