• Title/Summary/Keyword: Eco-friendly machining

Search Result 10, Processing Time 0.029 seconds

Heat Generation and Machining Accuracy According to Material for Ultra-Precision Machining (차량 경량화를 위한 이종소재 접합 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol;Lee, Dong-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.130-135
    • /
    • 2018
  • Currently the automobile market is developing eco-friendly vehicles in order to cope with fuel efficiency regulations. Many studies have been conducted to improve travel performance and fuel economy of the environment-friendly vehicles, and vehicle manufacturers study how to manufacture light-weight vehicles for improving fuel economy for both existing vehicles and environment-friendly vehicles. Exemplary light-weight vehicle technologies include optimal design of vehicle body structure which is a light-weight vehicle method by changing component shapes or layout to optimize the vehicle body structure and the new process technology for using new light-weight and very strong materials Various studies.

A Study on Bench Design Using Wooden Ship Making Techniques (목선(木船) 제작기법을 이용한 벤치디자인 연구)

  • Kim, Do-Hoon;Yoon, Yeoh-Hang
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • The most widely used material in furniture is wood. It is not only because it has good machinability and can be easily accessed, but also it is eco-friendly and human-friendly. Such material has been continuously being used for furniture and its machining method has been being actively researched and developed. Lumber has and has developed its own machining method. The conventional lumber machining method is difficult to make various types of furniture because it focuses on solving lumber's own modification problem due to the swelling and shrinking, and durability. Considering such characteristic of the material, a method to make it light and durable has been being researched and possibilities were found in wooden ships. Wooden ships are ships made of lumber, and are light and strong to be used in water. Also, in order to reduce the water resistance, it has streamlined curves so is formatively beautiful. The elegant curves and light and strong structure showed sufficient possibility to be used in furniture. Thus, the purpose of this study is to find a method to make various shapes of lumber lightly and strongly, using the production method of wooden ships, and to use this production method in designing furniture to propose a new form and structure of bench design, differentiating from conventional monotypic furniture.

  • PDF

A Study on the Shape Optimization and Structural Analysis of the Suction Chamber for an ECO Vacuum Filter System (ECO Vacuum Filter System 용 흡입 챔버의 구조해석 및 형상 최적화에 관한 연구)

  • Lee, Choon-Man;Ha, Jae-Hyeon;Woo, Wan-Sik;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.971-977
    • /
    • 2016
  • Recently, the problem of the accumulation of fine sludge from the cutting oil generated during machining processes has become a major threat to the environment. The fine sludge has adverse affects on the human body and the environment, and significantly contributes to marine pollution. However, a microfiltration technique that can process the sludge still needs to be studied and developed on a global scale. Therefore, it is necessary to develop eco-friendly equipment such as an ECO vacuum filter system and eco-friendly technologies for processing cutting oil. In this study, a structural analysis was carried out using a finite element method (FEM). Improved models of the suction chamber for the ECO vacuum filter system were proposed based on the analysis of the displacement and stress of the system. The model with the best result was then optimized using the commercial software, ANSYS. It was confirmed that, in the optimized model, displacement and stress were reduced in comparison with the initial model. Finally, the structural stability of the optimized model was verified through analysis.

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

Evaluation on Effect of Hole Machining for Application of M1.0 Subminiature Screw to CFRP Laminate Using FEM (FEM을 이용한 M1.0 초소형 나사 적용을 위한 CFRP 적층판의 홀 가공 영향평가)

  • Kim, Dae Young;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being "eco-friendly" and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Development of Manufacturing System Package for CFRP Machining (패키지형 탄소섬유복합재 가공시스템 개발)

  • Kim, Hyo-Young;Kim, Tae-Gon;Lee, Seok-Woo;Yoon, Han-Sol;Kyung, Dae-Su;Choi, In-Hue;Choi, Hyun;Ko, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth's resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.

Hinge Design and Injection Molding Simulation of Cosmetic Cushion Fact Container Using Eco-Friendly Materials (친환경 소재를 이용한 화장품 쿠션 팩트 용기의 힌지 설계와 사출 성형 시뮬레이션)

  • Jung, Sung-Taek;Kim, Hyun-Jeong;Wi, Eun-Chan;Kim, Min-Su;Lee, Joong-Bae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2019
  • As the consumer market in the cosmetic, vehicle manufacturing and aerospace industries grows, the demand for manufacturing industries using on injection mold technology. Also, such manufacturing technology of metal machining is expensive, and the shape is limited. Cosmetic cushion fact products are divided into outer relevant to the exterior of the product and inner containers containing the actual contents. In the case of the inner container, it needs to be combined with the upper and lower cases. As environmental regulations are strengthened internationally, the use of a large number of component parts can result in significant losses in recycling and economics. Therefore, this study aims to perform injection molding analysis through injection molding simulation to develop a cushion fact container that can be recycled through the unification of products and materials using polypropylene to cope with environmental regulations. In the case of injection molding conditions, Injection Time(sec): 4.5, Cooling Time(sec): 13, Resin Temperature($^{\circ}C$): 240, and Pressure(MPa): 30 were determined. The results of injection molding simulation according to the two design methods were compared with the sync mark which shows the problem of filling and injection molding.

A study on machining characteristics in vaporized amplification sheets of electron beam (증기화 증폭시트를 적용한 전자빔 가공 특성 연구)

  • Kim, Seong Hyun;Jung, Sung Taek;Kim, Hyun Jeong;Baek, Seung Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.46-50
    • /
    • 2018
  • Recently, as machine components and products are getting smaller, it is demanded to develop superprecision production technologies multilaterally. Along with the advancement of production technology, people are paying keener attention to the development of eco-friendly technology and efficient processing technology. Particularly, in many industries related to automobiles, shipbuilding, or airplane components, it is demanded to obtain technology to process multiple micro-holes. On account of this trend, micro-hole processing employing high-power electron beams is rising nowadays, and more interest is being shown in it, too. In Korea, however, the process of manufacturing vaporized amplification sheets influencing high-power electron beam processing technology and the processability considerably has not been developed sufficiently yet. Therefore, this study has applied vaporized amplification sheets manufactured to analyze the processability of high-power electron beams and examine necessity for vaporized amplification sheets.