• Title/Summary/Keyword: Eco-Toxicity Testing

Search Result 14, Processing Time 0.024 seconds

Ecotoxicological effects of ballast water effluent teated by an electrolytic method on marine environment

  • Kim, Tae Won;Kim, Keun-Yong;Shon, Myung-Baek;Kim, Young-Soo;Lee, Ji Hyun;Moon, Chang Ho;Son, Min Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1010-1020
    • /
    • 2014
  • Ballast water effluent treated by an electrolytic method contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for three marine pelagic organisms, i.e., diatom Skeletonema costatum, rotifer Brachionus plicatilis and fish Paralichthys olivaceus. The biological toxicity test revealed that S. costatum was the only organism that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 12.5%, 25.0% and 83.3%, respectively, at brackish water condition. In contrast, it showed insignificant toxicity at seawater condition. B. plicatilis and P. olivaceus also showed no toxicities to the effluent at the both salinity conditions. Meanwhile, chemical analysis revealed that the ballast water effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 20 DBPs including bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs) and chloropicrin. Based on ERA, the 20 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. Except monobromoacetic acid, the ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other 19 DBPs did not exceed 1. Thus, our results of WET testing and ERA indicated that the ballast water effluent treated by electrolysis and subsequently neutralization was considered to have no adverse impacts on marine environment.

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

A Study on the Eco-Toxicity of Silicone-Based Antifoaming Agents Discharging into Marine Environments (해양으로 배출되는 실리콘계 소포제의 생태독성 연구)

  • Kim, Tae Won;Kim, Young Ryun;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2019
  • In order to understand the effects of the main components of antifoaming agents on the marine benthic ecosystem when silicone-based antifoaming agents are discharged into marine environments, eco-toxicity testing was performed on silicone and alcohol-based antifoaming agent by using benthic amphipod (Monocorophium acherusicum) and luminescent bacteria (Vibrio fischeri). The toxic effects of Polydimethylsiloxane (PDMS) as a main component of silicone-based antifoaming agents on aquatic organisms were also researched. In the results of the eco-toxicity test, luminescent bacteria showed a maximum of 9 times more toxic effects than benthic amphipod for alcohol-based antifoaming agents, and silicone-based antifoaming agents showed a maximum of 400 times more toxic effects than alcohol-based. The $LC_{50}$ and $EC_{50}$ values of PDMS ranged from 10 to $44,500{\mu}g/L$ in phytoplankton, invertebrate, and fish. In the results of applying PBT (P: persistency, B: bioaccumulation, T: toxicity) characteristics as an index showing the qualitative characteristics of PDMS, persistency (P) and bioaccumulation (B) were confirmed. Thus, when PDMS is discharged to marine environments, it could accumulate in the upper trophic level through bioaccumulation and the food chain, which could have negative effects on benthic organisms. The results of this study may be used for objective and scientific risk assessment, considering the major components of antifoaming agents when investigating the effects of various discharged antifoaming agents in marine ecosystem.

Improvement of Performance Test Standards for Marine Pollution Prevention Materials and Chemicals (for Eco-toxicity Test) (해양오염방제 자재·약제의 성능시험기준 개선방안에 관한 연구(생태독성시험 항목))

  • Kim, Tae Won;Lee, Su Jin;Kim, Young Ryun;Lee, Moon Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.744-753
    • /
    • 2021
  • This study suggests ways to improve the standard test method and judgment criterion for the "Eco-toxicity Test" based on the rules and regulations provided in 'performance and qualifying test standards for marine pollution prevention materials and chemicals' in the Republic of Korea. Compared with the relevant references of other countries, this study attempted to find the limitations in the existing standards. As for the growth inhibition test of algae using Skeletonema costatum as an indicator, applying comparative analysis to measure specific growth rates, together with statistical analysis, instead of applying current methods, judged by the appearance of colors from the culture medium was suggested. Considering the exponential growth phase of the test species, the test duration was suggested to be reduced to less than four days. For the test with fish as an indicator, resetting the appropriate body size was suggested to, show consistent sensitivity against chenicals applied during testing. Furthermore, it is necessary to consider the criteria needs, which should be established in reasonable and objective ways. For the testing species, marine rotifer, Brachionus plicatilis could be a replacement for Artemia sp., and a bivalve for fish in the test. To improve the performance effectiveness of the "Eco-toxicity test", it is worth considering the designation of accredited testing institutes, by placing it in the same loop. Thus it is also expected to have a reliable management system in place, having the capacity of cost calculation properly and adjusting testing items if required.

Environmental Toxicity of ACQ-Treated Wood Based on the Fish Acute Test (어류급성독성 시험에 의한 ACQ 방부목재의 환경 독성)

  • Woo, Ji-Keun;Kim, Du-Won;Kim, Sung-Kyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.107-115
    • /
    • 2011
  • The purpose of the study is to analyze the environmental characteristics of fish acute toxicity that is dependent on the harmfulness of ACQ (Alkaline Copper Quat)-Treated Wood and Oryzias latipes mortality in a comprehensive way, provide objective verification method on the eco-toxicity and environment-friendliness of landscaping materials and methods, and utilize it as a basic datum for evaluation criteria. The main results are summarized as follows : 1. As a result of analysis on the harmfulness characteristics, each experimental plot showed different values respectively. In particular, it has been found that in proportion to the volume of testing materials, COD and Cu increases at a constant rate, compared to the input water. In the plot C with three testing materials, COD increased 67 times more than that of the input water, and Cu increased up to 12.36mg/L. 2. In case of fish toxicity, plot C, B, A all showed a mortality rate of 100%, indicating that fish toxicity is strong. In particular, the mortality rate of each plot within the initial time of one and a half hour showed clearly, which suggests that the fish toxicity is influenced by the increased concentration of hazardous substances depending on the volume ratio of testing materials. 3. As a result of comparison and analysis on the harmfulness and fish toxicity, the harmfulness showed different values on each experimental plot but, we found that the changing rate of values of toxicity of COD and Cu is mutually similar to that of mortality in the initial hour according to the experiment of fish toxicity, which shows that COD and Cu are major factors to increase fish toxicity.

Assessing the phytotoxicity of cetrimonium bromide in plants using eco-physiological parameters

  • Song, Uhram;Kim, Han Eol
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.120-124
    • /
    • 2016
  • Background: Although cetrimonium bromide is widely used for its bactericidal effects, the safety of cetrimonium bromide remains controversial. Therefore, the phytotoxicity of cetrimonium bromide was tested to evaluate its acute toxicity to plants and possible toxicity to other organisms and the ecosystem. Results: The germination rates of two test species, Lactuca sativa and Brassica campestris, were significantly decreased after cetrimonium bromide treatment. Furthermore, cetrimonium bromide treatment at over 1 mg/L concentration significantly affected root elongation immediately after germination. In pot experiments with semi-mature plants, significantly decreased shoot elongation and chlorophyll content were detected in both species following cetrimonium bromide treatment. Cetrimonium bromide treatment also significantly increased the antioxidant enzyme activities of plants. Conclusion: Our results show that cetrimonium bromide is phytotoxic, and since phytotoxicity testing can imply potential toxicity in the environment, further studies of the environmental toxicity of cetrimonium bromide should be performed.

Application of Toxicity Identification Evaluation Procedures for Toxic Effluents from the Aluminum Rolling Industry (알루미늄 가공 공장 배출 방류수의 독성 원인물질 탐색)

  • Ra, Jin-Sung;Lee, Jiho;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.305-313
    • /
    • 2015
  • Objectives: The objective of this study is to identify toxicants causing acute toxicity in effluents from the aluminum rolling industry that violate the discharge limits in Korea. Methods: Whole effluent toxicity tests (WET) were conducted on effluent discharged from the aluminum rolling industry following the US EPA WET test methods. We collected effluent samples three times and evaluated acute toxicity by using Daphnia magna. We employed toxicity identification evaluation (TIE) procedures to identify toxicants causing toxicity in the effluent. Results: No specific chemical groups were identified in the seven different manipulations applied to the of wastewater effluent samples showing 1.3 toxic units (TU) according to the TIE phase I procedures. Water quality parameters for water hardness, electric conductivity and heavy metals (Mn) were 4,322 mg/l as $CaCO_3$, 11.39 mS/cm, and $5,551{\mu}g/l$, respectively. Considering water hardness and reference toxicity, high concentrations of Mn can be disqualified from the causative toxicants. Consequently, high ionic concentrations of $Na^+$(1,648 mg/l), $Ca^{2+}$(1,048 mg/l), $Mg^{2+}$(1,428 mg/l) and $SO_4{^{2-}}$(7,472 mg/l) were identified to be causative toxicants. Water hardness and electric conductivity exceed the $EC_{50}$ value obtained by biological toxicity tests using Daphnia magna. Conclusion: According to TIE procedures, high salt concentration is determined to be a major toxicant in the effluent of agro-industrial wastewater treatment plants receiving wastewater from the aluminum rolling industry.

The Study on the Marine Eco-toxicity and Environmental Risk of Treated Discharge Water from Ballast Water Management System using Plasma and MPUV (Plasma와 MPUV를 이용한 평형수관리장치의 배출수에 대한 해양생태독성 및 해양환경위해성에 관한 연구)

  • Shon, M.B.;Son, M.H;Lee, J.;Lee, S.U.;Lee, J.D.;Moon, C.H.;Kim, Y.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.281-291
    • /
    • 2012
  • In this study, WET (whole effluent toxicity) test with Skeletonema costatum, Tigriopus japonicus and Paralichthys olivaceus and ERA (environmental risk assessment) were conducted to assess the unacceptable effect on marine ecosystem by emitting the treated discharge water from 'ARA Plasma BWTS' BWMS (ballast water management system) using filtration, Plasma and MPUV module. 34 psu treated discharge water from ARA Plasma BWTS shown slight chronic toxicity effect on the P. olivaceus ($7d-LC_{50}{\Rightarrow}100.00%$ treated discharge water, $7d-LC_{25}{\Rightarrow}85.15%$ treated discharge water). Bromobenzene, chlorobenzene and 4-chlorotoluene in 34 psu treated discharge water from ARA Plasma BWTS were higher than in the background original content of seawater. The PECs (predictive environmental concentrations) of bromobenzene, chlorobenzene and 4-chlorotoluene calculated by MAMPEC (marine antifoulant model to predict environmental concentrations) program (ver. 3.0) were 3.34E-03, 2.10E-03 and 1.73E-03 ${\mu}g\;L^{-1}$, respectively and PNECs (predicted no effect concentrations) of them were 1.6, 0.5 and 1.9 ${\mu}g\;L^{-1}$. The PEC/PNEC ratio of bromobenzene, chlorobenzene and 4-chlorotoluene did not exceed one and 3 substances did not consider as persistence, bioaccumulative and toxic. Therefore, it was suggested that treated discharge water from ARA Plasma BWTS did not pose unacceptable effect on marine ecosystem.

A Study on Marine Ecological Risk Assessment of Ballast Water Management Technology Using the Sodium Dichloroisocyanurate (NaDCC) Injection Method (이염화이소시아뉼산나트륨(NaDCC) 주입 선박평형수 처리기술의 해양생태위해성평가에 대한 연구)

  • Kim, Tae Won;Moon, Chang Ho;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Ballast water treated by sodium dichloroisocyanurate (NaDCC) injection method in ballast water management system (BWMS) contains reactive bromine, chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on the marine environment. WET testing was carried out for eight marine and fresh water organisms, i.e. diatom, Skeletonema costatum, Navicula pelliculosa, green algae, Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer, Brachionus plicatilis, Brachionus calyciflorus and fish, Cyprinodon variegatus, Pimephales promelas. The WET test revealed that diatom and green algae were the only organisms that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50 % (EC50) values of 25.0 %, 50.0 % and over 100.0 %, respectively, in seawater conditions. In contrast, rotifer and fish showed no toxicities to the effluent in the all salinity conditions. Meanwhile, chemical analysis revealed that the BWMS effluent contained total of 25 DBPs such as bromate, isocyanuric acid, formaldehyde, chloropicrin, trihalomethanes (THMs), halogenated acetonitriles (HANs) and halogenated acetic acids (HAAs). Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the all DBPs did not exceed 1.0 for general harbour environments, but isocyanuric acid, tribromomethane, chloropicrin and monochloroacetic acid exceed 1.0 for near ship environments. However, when NOEC (25.0%) of the WET test results where actual effluent was applied, it was concluded that the NaDCC injection method did not have unacceptable ecological risks to the general harbor including near ship environments.

Monitoring and Environmental Risk Assessment of Genetically Modified Microalgae (유전자변형 미세조류의 생태 유출 모니터링 및 위해성평가 연구)

  • Cho, Kichul;Jeon, Hancheol;Hwang, Hyun-Ju;Hong, Ji Won;Lee, Dae-Sung;Han, Jong Won
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.52-61
    • /
    • 2019
  • Over the past few decades, microalgae-based biotechnology conjugated with innovative CRISPR/Cas9-mediated genetic engineering has been attracted much attention for the cost-effective and eco-friendly value-added compounds production. However, the discharge of reproducible living modified organism (LMO) into environmental condition potentially causes serious problem in aquatic environment, and thus it is essential to assess potential environmental risk for human health. Accordingly, in this study, we monitored discharged genetically modified microalgae (GMM) near the research complex which is located in Daejeon, South Korea. After testing samples obtained from 6 points of near streams, several green-colored microalgal colonies were detected under hygromicin-containing agar plate. By identification of selection marker genes, the GMM was not detected from all the samples. For the lab-scale environmental risk assessment of GMM, acute toxicity test using rotifer Brachionus calcyflorus was performed by feeding GMM. After feeding, there was no significant difference in mortality between WT and transformant Chlamydomonas reinhardtii. According to further analysis of horizontal transfer of green fluorescence protein (GFP)-coding gene after 24 h of incubation in synthetic freshwater, we concluded that the GFP-expressed gene not transferred into predator. However, further risk assessments and construction of standard methods including prolonged toxicity test are required for the accurate ecological risk assessment.