Monitoring and Environmental Risk Assessment of Genetically Modified Microalgae |
Cho, Kichul
(Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea)
Jeon, Hancheol (Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea) Hwang, Hyun-Ju (Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea) Hong, Ji Won (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) Lee, Dae-Sung (Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea) Han, Jong Won (Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea) |
1 | Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65(6), 635-648. DOI |
2 | Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101(2), 87-96. DOI |
3 | Abdel-Raouf, N., Al-Homaidan, A. A. and Ibraheem, I. B. M. 2012. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19(3), 257-275. DOI |
4 | Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V. and Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World J. Microb. Biotechnol. 27(8), 1737-1746. DOI |
5 | Metting, B. 1990. Microalgae applications in agriculture. Dev. Ind. Microbiol. 31, 265-270. |
6 | Wijffels, R. H., Kruse, O. and Hellingwerf, K. J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaaryotic microalgae. Curr. Opin. Biotech. 24(3), 405-413. DOI |
7 | Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J. S., Jin, E. and Bae, S. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6, 30620. DOI |
8 | Baek, K., Yu, J., Jeong, J., Sim, S. J., Bae, S. and Jin, E. 2018. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol. Bioeng. 115(3), 719-728. DOI |
9 | Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. S., Lee, B., Hwangbo, K. and Kim, J. 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6, 27810. DOI |
10 | Tran, Q. G., Cho, K., Park, S. B., Kim, U., Lee, Y. J. and Kim, H. S. 2019a. Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii. Sci. Rep. 9(1), 1-9. DOI |
11 | Beacham, T. A., Sweet, J. B. and Allen, M. J. 2017. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. Algal Res. 25, 90-100. DOI |
12 | Tran, Q. G., Cho, K., Kim, U., Yun, J. H., Cho, D. H., Heo, J., Park, S. B., Kim, J. W., Lee, Y. J., Ramanan, R. and Kim, H. S. 2019b. Enhancement of -carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii. Bioresour. Technol. 292, 121937. DOI |
13 | Hamilton, M. L., Haslam, R. P., Napier, J. A. and Sayanova, O. 2014. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab. Eng. 22, 3-9. DOI |
14 | Leon, R., Couso, I. and Fernandez, E. 2007. Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J. Biotechnol. 130(2), 143-152. DOI |
15 | Glass, D. J. 2015. Government regulation of the uses of genetically modified algae and other microorganisms in biofuel and bio-based chemical production. In Algal Biorefineries. Springer, Cham, pp 23-60 |
16 | Szyjka, S. J., Mandal, S., Schoepp, N. G., Tyler, B. M., Yohn, C. B., Poon, Y. S., Villareal, S., Burkart, M. D., Shurin, J. B. and Mayfield, S. P. 2017. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res. 24, 378-386. DOI |
17 | Hwang, H. J., Kim, Y. T., Kang, N. S. and Han, J. W. 2018. A Simple Method for Removal of the Chlamydomonas reinhardtii Cell Wall Using a Commercially Available Subtilisin (Alcalase). J. Mol. Microbiol. Biotechnol. 28(4), 169-178. DOI |
18 | Dunahay, T. G. 1993. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques, 15(3), 452-5. |
19 | Ladygin, V. G. and Boutanaev, A. M. 2002. Transformation of Chlamydomonas reinhardtii CW-15 with the hygromycin phosphotransferase gene as a selectable marker. Russian. J. Genet. 38(9), 1009-1014. DOI |
20 | Wittkopp, T. M. 2018. Nuclear Transformation of Chlamydomonas reinhardtii by Electroporation. Bio-protocol. 8(9). |
21 | EL-Sheekh, M. M., Almutairi, A. W. and Touliabah, H. E. 2019. Construction of a novel vector for the nuclear transformation of the unicellular green alga Chlamydomonas reinhardtii and its stable expression. J. Taibah University Sci. 13(1), 529-535. DOI |
22 | Kumar, S. V., Misquitta, R. W., Reddy, V. S., Rao, B. J. and Rajam, M. V. 2004. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 166(3), 731-738. DOI |
23 | Talebi, A. F., Tohidfar, M., Tabatabaei, M., Bagheri, A., Mohsenpor, M. and Mohtashami, S. K. 2013. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol. Biol. Rep. 40(7), 4421-4428. DOI |
24 | Kumar, S. 2015. GM algae for biofuel production: biosafety and risk assessment. Collect. Biosaf. Rev. 9, 52-75. |
25 | Liu, L., Wang, Y., Zhang, Y., Chen, X., Zhang, P. and Ma, S. 2013. Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol. Biotechnol. 54(2), 211-219. DOI |
26 | Poulsen, N., Chesley, P. M. and Kroger, N. 2006. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae) 1. J. Phycol. 42(5), 1059-1065. DOI |
27 | Steinbrenner, J. and Sandmann, G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72(12), 7477-7484. DOI |
28 | Apt, K. E., Grossman, A. R. and Kroth-Pancic, P. G. 1996. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet. 252(5), 572-579. |
29 | Dunahay, T. G., Jarvis, E. E. and Roessler, P. G. 1995. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31(6), 1004-1012. DOI |
30 | Te, M. R. and Miller, D. J. 1998. Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J. 13(3), 427-435. DOI |
31 | Shin, W. S. 2018. Genetic modulation of light-harvesting complex in chlorella to improve photosynthetic efficiency and biomass productivity, Ph. D. Thesis in Korea Advanced Science and Technology (KAIST), Korea |
32 | Jeong, C. B., Lee, Y. H., Park, J. C., Kang, H. M., Hagiwara, A. and Lee, J. S. 2019. Effects of metal-polluted seawater on life parameters and the induction of oxidative stress in the marine rotifer Brachionus koreanus. Comp. Biochem. Physiol. C. 225, 108576. |
33 | Chow, K. C. and Tung, W. L. 1999. Electrotransformation of Chlorella vulgaris. Plant Cell. Rep. 18(9), 778-780. DOI |
34 | Bertoni, G. and Marsan, P. A. 2005. Safety risks for animals fed genetic modified (GM) plants. Vetres. Commun. 29(2), 13-18. |
35 | Romero-Freire, A., Joonas, E., Muna, M., Cossu-Leguille, C., Vignati, D. A. L. and Giamberini, L. 2019. Assessment of the toxic effects of mixtures of three lanthanides (Ce, Gd, Lu) to aquatic biota. Sci. Total Environ. 661, 276-284. DOI |
36 | Saavedra, J., Stoll, S. and Slaveykova, V. I. 2019. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 252, 715-722. DOI |
37 | Bhatti, F., Asad, S., Khan, Q. M., Mobeen, A., Iqbal, M. J. and Asif, M. 2019. Risk assessment of genetically modified sugarcane expressing AVP1 gene. Food Chem. Toxicol. 130, 267-275. DOI |
38 | Domingo, J.L. 2007. Toxicity studies of genetically modified plants: a review of the published literature. Crit. Rev. Food. Sci. 47(8), 721-733. DOI |
39 | Seralini, G. E., Cellier, D. and de Vendomois, J. S. 2007. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch. Environ. Con. Tox. 52(4), 596-602. DOI |
40 | Gasson, M. J. 2000. Gene transfer from genetically modified food. Curr. Opin. Biotech. 11(5), 505-508. DOI |
41 | Thomson, J. A. 2001. Horizontal transfer of DNA from GM crops to bacteria and to mammalian cells. J. Food Sci. 66(2), 188-193. DOI |