• Title/Summary/Keyword: Echolocation

Search Result 23, Processing Time 0.029 seconds

Echolocation Call Structure and Intensity of the Malaysian Myotis muricola (Chiroptera: Vespertilionidae)

  • Yoon, Kwang Bae;Park, Yung Chul
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.1
    • /
    • pp.99-102
    • /
    • 2016
  • Echolocation call structure and intensity were measured from the Malaysian Myotis muricola, which were recorded from the hand-released bat. The Malaysian M. muricola produced typical FM call pattern of the genus Myotis, producing steep, downward frequency-modulated calls. The average PF of calls is $64.39{\pm}1.33(kHz)$. Discrete PF patterns of two types are found, which consist of 63.39 kHz and 66.15 kHz. The averages of SF and D are $126.07{\pm}3.37kHz$ and $2.14{\pm}0.29ms$, respectively. There are various IPI lengths with average of $42.97{\pm}12.68ms$. A pulse consists of two harmonies which consist of the first harmony with wider bandwidth and the second harmony with narrower bandwidth. The PF of the first harmony is higher than that of the second harmony. The typical FM call structure, with two harmonies and wide bandwidth, would be highly related to fast flying and wide screening in the dense forests.

Using Echolocation Search Algorithm (ESA) for truss size optimization

  • Nobahari, Mehdi;Ghabdiyan, Nafise
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.855-864
    • /
    • 2022
  • Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.

General Patterns in Echolocation Call of Greater Horseshoe Bat Rhinolophus ferrumequinum, Japanese Pipistrelle Bat Pipistrellus abramus and Large-Footed Bat Myotis macrodactylus in Korea (한국에 서식하는 곤박쥐 Rhinolophus ferrumequinum, 집박쥐 Pipistrellus abramus, 큰발윗수염박쥐 Myotis macrodactylus의 반향정위 형태)

  • Chung, Chul-Un;Han, Sang-Hoon;Lim, Chun-Woo;Kim, Sung-Chul;Lee, Hwa-Jin;Kwon, Yong-Ho;Kim, Chul-Young;Lee, Chong-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • In this study, we analyzed the pulse-duration, pulse-interval and peak-frequency of echolocation call in three species as Rhinolophus ferrumequinum, Pipistrellus abramus, and Myotis macrodactylus. The peak frequency and pulse duration for above mentioned species were 69 kHz, 47 kHz and 49 kHz and $69.39{\pm}8.76\;ms$, $4.95{\pm}0.77\;ms$ and $3.09{\pm}0.48\;ms$ for R. ferrumequinum, P. abramus and M. macrodactylus, respectively. The pulse intervals for R. ferrumequinum, P. abramus and M. macrodactylus were $103.61{\pm}9.05\;ms$, $67.59{\pm}3.47\;ms$ and $66.35{\pm}4.96\;ms$, respectively. The pulse pattern of R. ferrumequinum was setting into a short FM call and linked to long CF call and went through the short FM call again. The pulse pattern of M. macrodactylus was comprised with serial short FM call and the CF call was not checked up in accordance with the spectrogram analysis. The long FM call and short CF call got join together for the P. abramus and the peak frequency was checked up at the pulse ending as CF call.

A Study on the Characteristics of Echolocation Signals of the Common Dolphin, Delphinus Delphis (참돌고래의 반향정위 신호특성에 관한 연구)

  • 신형일;윤갑동;신현옥;최한규;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.189-195
    • /
    • 2001
  • The characteristics of echolocation signals of the Common Dolphin, Delphinus Delphis was observed by the hydrophone in order to detect exactly distribution and migration on whales and dolphins in Korean Coastal waters. It's observation was carried out at the position of 13 mm off Gam-Po of Korean east-southern sea at 3rd-5th. April and 13th-15th. October, 1999. The results obtained are summarized as follows: (1) The frequency range of ship's noise and ambient noise in the observed station was 0.5-0.3 kHz, that ones could be influenced to the behavior of common dolphins which carry out echolocation using low-frequency. (2) The common dolphin was radiated single click of 8.6 ms and double click of 4.8 ms pulse width during these observation (3) The high click frequencies of common dolphin were 5.10 kHz, 7.22 kHz, 10.60 kHz with the click pulse width of 4.0 ms, 2.6 ms, 1.0 ms, respectively. In case of low-frequency 1-2 kHz, that is, 1.12 kHz, 1.38 kHz, 1.82 kHz, pulse width were 22.4 ms, 2.05 ms, 11.9 ms, respectively and they showed a tendency using triple click signal. (4) The pulse width, pulse recurrence interval and frequency range of the observed echolocation signals were 2.4-8.4 ms, 9.0-40.0 ms, 0.60-10.63 kHz respectively, and frequency spectrum level was 100-125 dB for single, double, triple click signals.

  • PDF

Characteristics of Auditory Stereocilia in the Apical Turn of the Echolocating Bats by Scanning Electron Microscopy

  • Kim, Jinyong;Jung, Yongwook
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • The auditory system of the Korean greater horseshoe bat (Rhinolophus ferrumequinum korai, RFK) is adapted to its own echolocation signal, which consist of constant frequency (CF) element and frequency modulated (FM) element. In contrast, the Japanese long-fingered bat (Miniopterus schreibersii fuliginosus, MSF) emits FM signals. In the present study, the characteristics of stereocilia in RFK (a CF/FM bat) and MSF (a FM bat) were studied in the apical turn of the cochlea where the lower frequencies are transduced. Stereocilia lengths and numbers were quantitatively measured in RFK by scanning electron microscopy and compared with those of MSF. Each inner hair cells (IHCs) of RFK possessed three rows of stereocilia, whereas MSF possessed five rows of stereocilia. Gradients in stereocilia lengths and numbers of stereocilia of the IHCs of RFK were found to be less pronounced and fewer, respectively, than those of MSF. Each outer hair cells (OHCs) possessed three rows of stereocilia in both species. OHCs stereocilia in RFK that distinguished it from MSF were a shorter length and a greater number of stereocilia. These features suggest that the apical cochleas of RFK are adapted for the processing of higher frequency echolocation calls rather than that of MSF.

Echolocation Signals of Pipistrellus abramus in Relation to Environmental Type (환경특성에 따른 집박쥐의 반향정위(Echolocation) 시그널 분석)

  • Chung, Chul-Un;Han, Sang-Hoon;Kim, Sung-Chul;Lee, Chong-Il
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.6
    • /
    • pp.553-563
    • /
    • 2009
  • This study was conducted to analyze the changes in the echolocation of Pipistrellus abramus according to environmental characteristics. The survey was conducted in the day-roosting site of P. abramus located in Gyeongju City (North Gyeongsang Province) from April to August, 2009. The environmental characteristics during the research were classified in six categories: the emergence time after sunset moving time from day roost to feeding areas; rice fields; forest edges; open spaces; and residential areas. Analysis results showed that there are differences in environmental characteristics and also differences between the moving time to the habitat and the moving time to capture preys. At the emergence time from day roost, Pipistrellus abramus used a FM signal with a short pulse-duration. In open spaces, however, they used a CF signal with a long pulse-duration. In different environmental situations, they used both FM and CF signals, although the types of pulse which they used were different. Except pulse-duration, there were significant differences in pulse-interval, peak-frequency, starting-frequency and ending-frequency between the movement among habitats and the movement to capture preys. Except the emergence time from day-roost, they showed a narrow band FM signal and a long pulse-duration that are suitable to search for insects by sensing echoes of insects when they moved among their habitats. When they were out to capture their preys, they showed a broad band FM signal and a short pulse-duration which enabled them to widely search and accurately locate their preys.

Analysis of echolocation click signals of Indo-Pacific bottlenose dolphin (Tursiops aduncus) in Jeju Island (제주 남방큰돌고래 반향정위 클릭음 특성 분석)

  • Choi, Kang-Hoon;Yoon, Young Geul;Kim, Sunhyo;Kim, Hyeonsu;Choi, Jee Woong;Bae, Ho Seuk;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.56-65
    • /
    • 2019
  • The Indo-Pacific bottlenose dolphins (Tursiops aduncus) are a toothed whale using echolocation clicks and have been studied continuously abroad. However, most studies on this whale's clicks were performed about captive animals and, in Korea, only the studies of the whistle sounds of this animal were done. In this paper, acoustic characteristics of clicks were analyzed about the free-ranging Indo-Pacific bottlenose dolphins living in the coast of the Jeju Island. Acoustic parameters such as signal duration, 1st and 2nd peak frequency, 3 dB and 10 dB bandwidth for acoustic characteristics were calculated and compared with those of Australian species. As a result, the signal durations had average of $38{\mu}s$ and most clicks were within range of $20{\mu}s-60{\mu}s$. The two types of bandwidths showed both narrowband and broadband characteristics, and bimodal signal characteristics were confirmed through the 1st peak frequencies(average of $96kHz{\pm}18kHz$) and the 2nd peak frequencies(average of $69kHz{\pm}19kHz$).

Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram;Fallah, Narges
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.983-1004
    • /
    • 2016
  • Nowadays, there are two classes of methods for damage detection in structures consisting of static and dynamic. The dynamic methods are based on studying the changes in structure's dynamic characteristics. The theoretical basis of this method is that damage causes changes in dynamic characteristics of structures. The dynamic methods are divided into two categories: signal based and modal based. The modal based methods utilize the modal properties consisting of natural frequencies, modal damping and mode shapes. As the modal properties are sensitive to changes in the structure, these can be used for detecting the damages. In this study, using dynamic method and modal based approach (natural frequencies and mode shapes), the objective function is formulated. Then, detection of damages of truss structures is addressed by using Simplified Dolphin Echolocation algorithm and solving inverse optimization problem. Many scenarios are used to simulate the damages. To demonstrate the ability of the algorithm, different truss structures with several multiple elements scenarios are tested using a few runs. The influence of the two different levels of noise in the modal data for these scenarios is also considered. The last example of this article is investigated using a different mutation. This mutation obtains the exact answer with fewer loops and population by limited computational effort.

Study of Acoustic Characteristics of Common Dolphins Delphinus delphis in the East Sea (동해 참돌고래(Delphinus delphis)의 음향학적 특성 연구)

  • Yoon, Young Geul;Sohn, Hawsun;Park, Kyum Joon;Choi, Young-Min;Kim, Sunhyo;Choi, Jee Woong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.406-412
    • /
    • 2017
  • Vocalizations of the common dolphin Delphinus Delphis, were recorded from a single hydrophone while coastal visual survey was performed in the East Sea in March 2017. Like most Delphinidae, common dolphins produce whistles, echolocation clicks, and burst-pulsed calls, with repertoires that differ between species and geographically separated populations. This study focuses on using frequency analysis to classify sounds into three categories and to compare them with those of other common dolphin populations. The fundamental frequencies of the whistles were high in the 6 to 14 kHz range, while echolocation clicks were in the 40 to 90 kHz frequency band. These results are similar to high-energy distributions in the same frequency band in other regions. Based on this study of the acoustic characteristics of dolphins off the east coast of Korea, cetacean vocalizations can be classified using a database of cetacean sounds in Korea. In addition, this technique could improve data quality for visual whale surveys and could be applied to various other research subjects.

Development of Vocal Signals in the Pipistrellus abramus(Chiroptera: Vespertilionidae) (집박쥐의 발성 시그널 발달에 관한 연구)

  • Chung, Chul-Un;Han, Sang-Hoon;Lee, Chong-Il
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.2
    • /
    • pp.202-208
    • /
    • 2010
  • This study reports developmental changes in the vocal signals produced by infant or young Pipistrellus abramus. In contrast to adult bats, infant bats of the P. abramus emitted calls characterized by multi harmonics and variable signal patterns. Infants at two day of age emitted a irregular signal and showed gentle FM signals between 10 and 20 days. After about 40 days of age, the young bats emitted similar signals to the echolocation calls of adults. As the infant bats growing up, vocal signals trend showen a decrease in pulse duration(p<0.001), pulse interval(p<0.001) and number of harmonic(p<0.001). And the peak frequency(p<0.001), starting frequency(p<0.001) and ending frequency(p<0.001) in infant bats increased with the age. The largest change in pulse interval occurred in 5 days. And the pulse duration, peak frequency, starting frequency and ending frequency of the bat's sounds changed most dramatically in 25 days of age.