Browse > Article
http://dx.doi.org/10.5322/JES.2010.19.1.061

General Patterns in Echolocation Call of Greater Horseshoe Bat Rhinolophus ferrumequinum, Japanese Pipistrelle Bat Pipistrellus abramus and Large-Footed Bat Myotis macrodactylus in Korea  

Chung, Chul-Un (Department of Life Science, Dongguk University)
Han, Sang-Hoon (National Institute of Biological Resources)
Lim, Chun-Woo (Department of Life Science, Dongguk University)
Kim, Sung-Chul (Department of Life Science, Dongguk University)
Lee, Hwa-Jin (Department of Life Science, Dongguk University)
Kwon, Yong-Ho (Department of Life Science, Dongguk University)
Kim, Chul-Young (Department of Life Science, Dongguk University)
Lee, Chong-Il (Department of Life Science, Dongguk University)
Publication Information
Journal of Environmental Science International / v.19, no.1, 2010 , pp. 61-68 More about this Journal
Abstract
In this study, we analyzed the pulse-duration, pulse-interval and peak-frequency of echolocation call in three species as Rhinolophus ferrumequinum, Pipistrellus abramus, and Myotis macrodactylus. The peak frequency and pulse duration for above mentioned species were 69 kHz, 47 kHz and 49 kHz and $69.39{\pm}8.76\;ms$, $4.95{\pm}0.77\;ms$ and $3.09{\pm}0.48\;ms$ for R. ferrumequinum, P. abramus and M. macrodactylus, respectively. The pulse intervals for R. ferrumequinum, P. abramus and M. macrodactylus were $103.61{\pm}9.05\;ms$, $67.59{\pm}3.47\;ms$ and $66.35{\pm}4.96\;ms$, respectively. The pulse pattern of R. ferrumequinum was setting into a short FM call and linked to long CF call and went through the short FM call again. The pulse pattern of M. macrodactylus was comprised with serial short FM call and the CF call was not checked up in accordance with the spectrogram analysis. The long FM call and short CF call got join together for the P. abramus and the peak frequency was checked up at the pulse ending as CF call.
Keywords
Bat; CF call; Echolocation; FM call; Pulse;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Waters D. A. and G. Jones, 1995, Echolocation call structure and Intensity in Five Species of Insectivorous Bats, J. Exp. BioI., 198, 475-489.
2 Ahlen I. and H. J. Baagoe, 1999, Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring, Acta Chir, 1(2), 137-150.
3 Jones G. and S. M. V. Parijs, 1993, Bimodal echolocation in pipistrelle bats: are cryptic species present?, Proc. R. Soc. Lond. B., 251, 119-125.   DOI
4 增田隆一, 阿部永, 2005, 動物地理の自然史(分布と多樣性の進化学). 北海道大学図書 刊行会, 225-241.
5 Moss C. F. and H. U. Schnitzler, 1989, Accuracy of target ranging in echolocating bats: Acoustic information processing, J. Comp. Physiol., A, 165, 383-393.   DOI
6 Moss C. F. and A. Surlykke, 2001, Auditory scene analysis by echolocation in bats, J. Acoust. Soc. Am, 110, 2207-2226.   DOI
7 Zhu X., J. Wang, K. Sun, T. Jiang, Y. Jiang and J. Feng, 2008, Echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors, Acta Ecologica Sinica, 28, 5248-5258.   DOI   ScienceOn
8 Siemers B. M., E. K. V. Kalko and H. U. Schnitzler, 2001, Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans(Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus?, Behav. Ecol. Sociobiol., 50, 317-328.   DOI
9 Neuweiler G., 1989, Foraging ecology and audition in echolocating bats, Trends Ecol. Evol., 4, 160-166.   DOI
10 Neuweiler G., 1990, Auditory adaptations for prey capture in echolocating bats, Physiol Rev., 70, 615-641.   DOI
11 Fenton M. B., 1990, The foraging behaviour and ecology of animal-eating bats, Can. J. Zool., 86, 411-422.
12 Schnitzler H. U. and E. K. V. Kalko, 2001, Echolocation by Insect-Eating Bats, BioScience, 51(7), 557-569.   DOI
13 Briggs B. and D. King, 1998, The Bat Detective-A Field Guide for Bat Detection. Batbox Ltd, c.
14 Jones G., 1999, Scaling of Echolocation Call Parameters In Bats, J. Exp. Biol., 202, 3359-3367.
15 Schnitzler H. U. and O. W. Henson, 1980, Performance of airborne animal sonar systems. I. Microchiroptera. In Busnel R. G., Fish J. F.(ed.), Animal Sonar Systems, Plenum Press, New York, 109-181.
16 Surlykke A., L. A. Miller, B. Mohl, B. B. Andersen, J. Christensen-Dalsgaard and M. B. Jorgensen, 1993, Echolocation in two very small bats from Thailand: Craseonycteris thonglongyai and Myotis siligorensis, Behav. Ecol. Sociobiol., 33, 1-12.   DOI
17 Vaughan N., G. Jones and S. Harris, 1997, Identification of British bat species by multivariate analysis of echolocation parameters, Bioacoustics, 7, 189-207.   DOI
18 Schnitzler H. U. and E. K. V. Kalko, 1998, How echolocating bats search and find food, In Kunz T. H., Racey. P. A.(ed.), Bat Biology and Conservation, Washington: Smithsonian Institution Press.
19 Jennings N. V., S. Parsons, E. K. Barlow and M. Gannon, 2004, Echolocation calls and wing morphology of bats from the West Indies, Acta Chir, 6(1), 75-90.   DOI
20 Parsons S. and G. Jones, 2000, Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks, J. Exp. BioI., 203, 2641-2656.
21 Speakman J. R., M. E. Anderson and P. A. Racey, 1989, The energy cost of echolocation in pipistrelle bats (Pipistrellus pipistrellus), J. Comp. Physiol., 165, 679-685.   DOI
22 Speakman J. R. and P. A. Racey, 1991, No cost of echolocation for bats in flight, Nature, 350, 421-423.   DOI
23 Wilson D. E. and D. M. Reeder, 2005, Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed., The Johns Hopkins University Press, Baltimore, 2142pp.
24 Kalko E. K. V., 1995, Insect pursuit, prey capture and echolocation in pipistrelle bats(Microchiroptera), Anim. Behav., 50, 861-880.   DOI