• Title/Summary/Keyword: Echo signal

Search Result 475, Processing Time 0.031 seconds

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Utility of Noncontrast Magnetic Resonance Angiography for Aneurysm Follow-Up and Detection of Endoleaks after Endovascular Aortic Repair

  • Hiroshi Kawada;Satoshi Goshima;Kota Sakurai;Yoshifumi Noda;Kimihiro Kajita;Yukichi Tanahashi;Nobuyuki Kawai;Narihiro Ishida;Katsuya Shimabukuro;Kiyoshi Doi;Masayuki Matsuo
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.513-524
    • /
    • 2021
  • Objective: To assess the noncontrast two-dimensional single-shot balanced turbo-field-echo magnetic resonance angiography (b-TFE MRA) features of the abdominal aortic aneurysm (AAA) status following endovascular aneurysm repair (EVAR) and evaluate to detect endoleaks (ELs). Materials and Methods: We examined four aortic stent-grafts in a phantom study to assess the degree of metallic artifacts. We enrolled 46 EVAR-treated patients with AAA and/or common iliac artery aneurysm who underwent both computed tomography angiography (CTA) and b-TFE MRA after EVAR. Vascular measurements on CTA and b-TFE MRA were compared, and signal intensity ratios (SIRs) of the aneurysmal sac were correlated with the size changes in the AAA after EVAR (AAA prognoses). Furthermore, we examined six feasible b-TFE MRA features for the assessment of ELs. Results: There were robust intermodality (r = 0.92-0.99) correlations and interobserver (intraclass correlation coefficient = 0.97-0.99) agreement. No significant differences were noted between SIRs and aneurysm prognoses. Moreover, "mottled high-intensity" and "creeping high-intensity with the low-band rim" were recognized as significant imaging findings suspicious for the presence of ELs (p < 0.001), whereas "no signal black spot" and "layered high-intensity area" were determined as significant for the absence of ELs (p < 0.03). Based on the two positive features, sensitivity, specificity, and accuracy for the detection of ELs were 77.3%, 91.7%, and 84.8%, respectively. Furthermore, the k values (0.40-0.88) displayed moderate-to-almost perfect agreement. Conclusion: Noncontrast MRA could be a promising imaging modality for ascertaining patient follow-up after EVAR.

Seafloor Sediment Classification Using Nakagami Probability Density Function of Acoustic Backscattered Signals (음향후방산란신호의 나카가미 확률밀도함수를 이용한 해저퇴적물 분류)

  • Bok, Tae-Hoon;Paeng, Dong-Guk;Park, Yo-Sup;Kong, Gee-Soo;Park, Soo-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.165-173
    • /
    • 2009
  • The physical properties of a seafloor sediment have been used as a basic data for the ocean survey. Conventional methods such as a coring, a drilling, and a grabbing have been used to explore the physical properties but these methods have a number of shortcomings as it is time consuming, expensive and spatially limited. To overcome these limitations, seafloor sediment classification using acoustic signals has been studied actively. In this paper, we obtained the backscattered signal from the seafloor sediment using an echo sounder which is one kind of seafloor topography equipment. Nakagami probability density function of the backscattered signals from the seafloor sediment was computed and a Nakagami parameter was compared with the physical properties of the seafloor sediment. We have confirmed that Nakagami parameter, m is correlated with the physical properties of a seafloor sediment. This study will be utilized as a basic data of the seafloor sediment research.

Development of Ultrasonic Defect Analysis Program for a Composite Motor Case (복합재 연소관의 초음파 결함 분석 프로그램 개발)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki;Lee, Kyung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • A defect analysis program for a composite motor case was developed to apply the ultrasonic signal processing method, based on the ultrasonic pulse-echo method. With the proposed defect analysis program, defects of FRP delamination and FRP/Rubber disbond in the composite motor case could be quantitatively measured. The defects detected in the composite motor case were in good agreement with the results measured with the computed tomography and video microscope. This paper described the development process of the defect analysis program to convert the ultrasonic test data into the C-Scan images.

MRAL Post Processing based on LS for Performance Improvement of Active Sonar Localization (소나 위치 추정 성능 향상을 위한 LS기반 MRAL 후처리 기법)

  • Jang, Eun-Jeong;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.172-180
    • /
    • 2012
  • In multi-static sonar for detecting an underwater target, received signals contain the target echo, reverberation and clutter. Clutter and reverberation are main causes of increasing the false alarm rate. MRAL classifies received signals according to the spatial similarity, and it regards classified signal as reflected signals from a reflector. MRAL reduces the false alarm rate this way. However, the results of MRAL can have localization errors. In this paper, an MRAL post processing algorithm is proposed to reduce the localization errors with the least square (LS) method.

Cupric Ion Species in Cu(II)-Exchanged Mesoporous MCM-41 Gallosilicate Determined by Electron Spin Resonance Studies

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.126-140
    • /
    • 1997
  • Mesoporous MCM-41 gallosilicate material was synthesized through shifting through shifting gallosilicate polymer equilibrium towards a MCM-41 phase by addition of acid. The location of Cu(II) exchanged into MCM-41 and its interaction with various adsorbate molecules were investigated by electron spin responance and electron spin echo modulation spectroscopies. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in a cylindrical channel and rotates rapidly at room temperature. Evacuation at room temperature removes three of these water molecules, leaving the Cu (II) coordinated to three water molecules and anchored to oxygens in the channel wall. Dehydration at 45$0^{\circ}C$ produces one Cu (II) species located in the inner surface of a channel as evidenced by broadening of its ESR lines by oxygen. Adsorption of polar molecules such as water, methanol and ammonia on dehydrated CuNa-MCM-41 gallosilicate material causes changes in the ESR spectrum of Cu (II), indicating the complex formation with these adsorbates. Cu (II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM data like upon water adsorption. Cu(II) also forms a complex containing four molecules of ammonia based on resolved nitrogen superhyperfine interaction.

  • PDF

Audio Watermarking in Sub-band Signals Using Multiple Echo Kernel (다중 반향 커널을 이용한 부대역 신호 기반 오디오 워터마킹)

  • Oh In-Jung;Cho Jae-Won;Chung Hyun-Yeol;Jung Ho-Youl
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.355-358
    • /
    • 2004
  • 최근 웨이블릿 변환을 이용하여 저주파수 부대역 신호를 반복적으로 분해하고 삽입된 워터마크 비트에 따라 특정 부대역 신호에 두개의 다른 반향 중 하나를 삽입하는 반향 삽입 기법을 제안하였다. 이 기법은 오디오 신호의 주파수 특성을 고려했기 때문에 시간 영역에서의 기존의 반향 삽입 기법에 비해 비가청성(inaudibility), 워터마크의 강인성(robustness) 및 용적성(capacity)을 모두 증가시킬 수 있다. 기존의 부대역 신호 기반 반향 삽입 기법이 단일 반향 커널만을 이용하였으나, 본 논문에서는 부대역 신호에 다중 반향 커널을 이용한 반향 삽입 기법을 제안한다. 이 기법은 주관적 왜곡(perceptibility)과 SNR(signal to Noise Ratio)과 같은 객관적인 왜곡 면에서, 원본 오디오 신호의 왜곡을 줄일 수 있다. 실험 결과를 통하여 기존의 방법에 비해 제안된 방법이 SNR과 DR(Detection Rate) 모두 좋은 성능을 보여 제안된 방법의 유효성을 입증하였다.

  • PDF

A Development of Ultrasonic Defect Analysis Program for Composite Motor Case (복합재 연소관의 초음파 결함 분석 프로그램 개발)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki;Lee, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.393-399
    • /
    • 2011
  • A defect analysis program of the composite motor case was developed to apply the ultrasonic signal processing method on basis of the ultrasonic pulse-echo method and the defects of FRP delamination and FRP/Rubber disbond in the composite motor case could be quantitatively measured. The defects detected in the composite motor case were in agreement with the results measured with the computed tomography and video microscope. This paper was described about the development process of the defect analysis program to convert the ultrasonic test data into the C-Scan image.

  • PDF

A Study on the RAM Application of a Light Rail Transit Business, Ac-cording to the Technique Application in System Engineering (시스템엔지니어링 기법 적용에 따른 경량전철사업의 RAM적용에 관한 고찰)

  • Lee, Seong-Gwon;Min, Kyong-Se;Jeon, Seo-Tak;Jung, Kye-Young
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • A LRT(Light Rail Transit) is one of the Future Urban Railway Development Project. The project's goal is to reduce a transportation congestion in the center of the city. New transportation is intensely required in order to overcome a limit of the ground transportation that is the existing public transportation, A LRT(Light Rail Transit) construction project to be based on an unmanned driving system is the large composition system that a vehicle, a signal, communication, electric, track etc. were organically integrated as echo-friendly urban transportation systems. It also put a huge budget, which is a large-scale infrastructure projects. It is international trend that Light Rail Transit projects apply a technique in System Engineering for a schedule, cost, quality elevations, and to approach in viewpoints of life-cycle from initial construction steps to operation, abolition. This paper intends to analyze RAM requirements taking into consideration ISO/IEC 15288 throughout life-cycle from concept, design, manufacture, operation and maintenance to the final phase, decommissioning, and the study seeks to suggest directions of efficient use to domestic LRT projects.

Changes in the Orientation and Frequency Dependence of Target Strength due to Morphological Differences in the Fish Swim Bladder (어류 부레의 형태학적 차이에 따른 음향산란강도의 자세 및 주파수 의존성의 변화)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.233-243
    • /
    • 2015
  • Controlled broadband acoustic scattering laboratory experiments were conducted using a linear chirp signal (95-220 kHz), and x-ray images of live and model fish with an artificial swim bladder were analyzed to investigate the changes in orientation and frequency dependence of target strength (TS) due to morphological differences in fish swim bladders. The broadband echoes from live and model fish were measured over an orientation angle range of ${\pm}45^{\circ}$ in the dorsal plane and in approximately $1^{\circ}$ increments. The location of nulls in the simulated echo response of the SINC [sinc function] model was overlaid on the TS map, showing the orientation and frequency dependence of fish TS, and they matched very well. It was possible to infer the equivalent fish scattering size (or swim bladder) using the null spacing in the experimentally obtained broadband TS map. Good agreement was observed for inferring the equivalent scattering size between the SINC model and the broadband echoes measured for the three fish species (black scraper Thamnaconus modestus; goldeye rockfish Sebastes thompsoni; and whitesaddled reef fish Chromis notatus). Some results of this inference are discussed.